Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 12/2023

30.08.2023 | Research Article-Chemical Engineering

Integrating Artificial Immune Genetic Algorithm and Metaheuristic Ant Colony Optimizer with Two-Dose Vaccination and Modeling for Residual Fluid Catalytic Cracking Process

verfasst von: Amir Hossein Hamedi, Hossein Abolghasemi, Saeid Shokri, Hadi Jafar Nia, Farshad Moayedi

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 12/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the complex nature of processing units and the variability in raw oil properties, traditional first-principle methods are not always effective in predicting the output of these units without adapting them. Data-driven models have become popular alternatives because they are more adaptable to the variability in processing units, especially when large amounts of data are available. Feature selection is a crucial aspect of data-driven modeling, especially for processing units. It involves identifying and selecting the most important variables influencing the unit's output. The selected variables are then used as inputs to the model, which helps to reduce noise and improve model accuracy. Accordingly, this article presents a hybrid method that combines feature selection with data-driven modeling to create an accurate model for predicting the output of a Residue Fluid Catalytic Cracking (RFCC) process unit. The Metaheuristic Ant Colony Optimizer (MACO) algorithm was used to extract the best subset of features from the collected data, which were then used with the Artificial Immune Genetic Algorithm with Local Vaccination (AIGA-LV) method to select the optimal features. Finally, the Random Forest (RF) method was used to predict the products of the RFCC process unit. The data were collected from a refinery plant in central Iran for nine months. The proposed model was efficient in feature selection and flexible in handling different scenarios and products. It improved the accuracy to 99.17% at its best and improved the primary model by 3–20%. Therefore, this method could be useful for predicting the output of various industrial processes, especially the RFCC and FCC process units.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Otterstedt, J.E.; Gevert, S.B.; Järås, S.G.; Menon, P.G.: Fluid catalytic cracking of heavy (residual) oil fractions: a review. Appl. Catal. 22(2), 159–179 (1986)CrossRef Otterstedt, J.E.; Gevert, S.B.; Järås, S.G.; Menon, P.G.: Fluid catalytic cracking of heavy (residual) oil fractions: a review. Appl. Catal. 22(2), 159–179 (1986)CrossRef
2.
Zurück zum Zitat Pinheiro, C.I.C.; Fernandes, J.L.; Domingues, L.; Chambel, A.J.S.; Graça, I.; Oliveira, N.M.C.; Cerqueira, H.S.; Ribeiro, F.R.: Fluid catalytic cracking (FCC) process modeling, simulation, and control. In: Industrial and Engineering Chemistry Research, pp. 1–29. American Chemical Society (2012) Pinheiro, C.I.C.; Fernandes, J.L.; Domingues, L.; Chambel, A.J.S.; Graça, I.; Oliveira, N.M.C.; Cerqueira, H.S.; Ribeiro, F.R.: Fluid catalytic cracking (FCC) process modeling, simulation, and control. In: Industrial and Engineering Chemistry Research, pp. 1–29. American Chemical Society (2012)
3.
Zurück zum Zitat Ren, Y.; Liao, Z.; Sun, J.; Jiang, B.; Wang, J.; Yang, Y.; Wu, Q.: Molecular reconstruction: recent progress toward composition modeling of petroleum fractions. In: Chemical Engineering Journal, pp. 761–775. Elsevier B.V. (2019) Ren, Y.; Liao, Z.; Sun, J.; Jiang, B.; Wang, J.; Yang, Y.; Wu, Q.: Molecular reconstruction: recent progress toward composition modeling of petroleum fractions. In: Chemical Engineering Journal, pp. 761–775. Elsevier B.V. (2019)
4.
Zurück zum Zitat Kim, S.W.; Lee, J.W.; Koh, J.S.; Kim, G.R.; Choi, S.; Yoo, I.S.: Formation and characterization of deposits in cyclone dipleg of a commercial residue fluid catalytic cracking reactor. Ind. Eng. Chem. Res. 51(43), 14279–14288 (2012)CrossRef Kim, S.W.; Lee, J.W.; Koh, J.S.; Kim, G.R.; Choi, S.; Yoo, I.S.: Formation and characterization of deposits in cyclone dipleg of a commercial residue fluid catalytic cracking reactor. Ind. Eng. Chem. Res. 51(43), 14279–14288 (2012)CrossRef
5.
Zurück zum Zitat Dalenogare, L.S.; Benitez, G.B.; Ayala, N.F.; Frank, A.G.: The expected contribution of industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 204, 383–394 (2018)CrossRef Dalenogare, L.S.; Benitez, G.B.; Ayala, N.F.; Frank, A.G.: The expected contribution of industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 204, 383–394 (2018)CrossRef
6.
Zurück zum Zitat Hassani, H.; Silva, E.S.: Big data: a big opportunity for the petroleum and petrochemical industry. OPEC Energy Rev. 42(1), 74–89 (2018)CrossRef Hassani, H.; Silva, E.S.: Big data: a big opportunity for the petroleum and petrochemical industry. OPEC Energy Rev. 42(1), 74–89 (2018)CrossRef
7.
Zurück zum Zitat Weekman, V.W.: A model of catalytic cracking conversion in fixed, moving, and fluid-bed reactors. Ind. Eng. Chem. Process Des. Dev. 7(1), 90–95 (1968)CrossRef Weekman, V.W.: A model of catalytic cracking conversion in fixed, moving, and fluid-bed reactors. Ind. Eng. Chem. Process Des. Dev. 7(1), 90–95 (1968)CrossRef
8.
Zurück zum Zitat Weekman, V.W.; Nace, D.M.: Kinetics of catalytic cracking selectivity in fixed, moving, and fluid bed reactors. AIChE J. 16(3), 397–404 (1970)CrossRef Weekman, V.W.; Nace, D.M.: Kinetics of catalytic cracking selectivity in fixed, moving, and fluid bed reactors. AIChE J. 16(3), 397–404 (1970)CrossRef
9.
Zurück zum Zitat Lee, L.-S.; Chen, Y.-W.; Huang, T.-N.; Pan, W.-Y.: Four-lump kinetic model for fluid catalytic cracking process. Can. J. Chem. Eng. 67(4), 615–619 (1989)CrossRef Lee, L.-S.; Chen, Y.-W.; Huang, T.-N.; Pan, W.-Y.: Four-lump kinetic model for fluid catalytic cracking process. Can. J. Chem. Eng. 67(4), 615–619 (1989)CrossRef
10.
Zurück zum Zitat Sani, A.G.; Ebrahim, H.A.; Azarhoosh, M.J.: 8-Lump kinetic model for fluid catalytic cracking with olefin detailed distribution study. Fuel 225, 322–335 (2018)CrossRef Sani, A.G.; Ebrahim, H.A.; Azarhoosh, M.J.: 8-Lump kinetic model for fluid catalytic cracking with olefin detailed distribution study. Fuel 225, 322–335 (2018)CrossRef
11.
Zurück zum Zitat John, Y.M.; Mustafa, M.A.; Patel, R.; Mujtaba, I.M.: Parameter estimation of a six-lump kinetic model of an industrial fluid catalytic cracking unit. Fuel 235, 1436–1454 (2019)CrossRef John, Y.M.; Mustafa, M.A.; Patel, R.; Mujtaba, I.M.: Parameter estimation of a six-lump kinetic model of an industrial fluid catalytic cracking unit. Fuel 235, 1436–1454 (2019)CrossRef
12.
Zurück zum Zitat Qin, X.; Liu, J.; Wang, C.; Ye, L.; Xing, B.; Yu, W.; Xie, J.; Wang, H.; Ji, Y.; Lu, D.: Molecular level analysis on performance of diameter expanding reactor to improve gasoline quality in FCC process. Fuel 290, 119978 (2021)CrossRef Qin, X.; Liu, J.; Wang, C.; Ye, L.; Xing, B.; Yu, W.; Xie, J.; Wang, H.; Ji, Y.; Lu, D.: Molecular level analysis on performance of diameter expanding reactor to improve gasoline quality in FCC process. Fuel 290, 119978 (2021)CrossRef
13.
Zurück zum Zitat Liu, J.; Chen, H.; Pi, Z.; Liu, Y.; Sun, H.; Shen, B.: Molecular-level-process model with feedback of the heat effects on a complex reaction network in a fluidized catalytic cracking process. Ind. Eng. Chem. Res. 56(13), 3568–3577 (2017)CrossRef Liu, J.; Chen, H.; Pi, Z.; Liu, Y.; Sun, H.; Shen, B.: Molecular-level-process model with feedback of the heat effects on a complex reaction network in a fluidized catalytic cracking process. Ind. Eng. Chem. Res. 56(13), 3568–3577 (2017)CrossRef
14.
Zurück zum Zitat Ge, Z.: Review on data-driven modeling and monitoring for plant-wide industrial processes. In: Chemometrics and intelligent laboratory systems, pp. 16–25. Elsevier B.V. (2017) Ge, Z.: Review on data-driven modeling and monitoring for plant-wide industrial processes. In: Chemometrics and intelligent laboratory systems, pp. 16–25. Elsevier B.V. (2017)
15.
Zurück zum Zitat Ge, Z.: Process data analytics via probabilistic latent variable models: a tutorial review. Ind. Eng. Chem. Res. 57(38), 12646–12661 (2018)CrossRef Ge, Z.: Process data analytics via probabilistic latent variable models: a tutorial review. Ind. Eng. Chem. Res. 57(38), 12646–12661 (2018)CrossRef
16.
Zurück zum Zitat Su, Y.; Jin, S.; Zhang, X.; Shen, W.; Eden, M.R.; Ren, J.: Stakeholder-oriented multi-objective process optimization based on an improved genetic algorithm. Comput. Chem. Eng. 132, 106618 (2020)CrossRef Su, Y.; Jin, S.; Zhang, X.; Shen, W.; Eden, M.R.; Ren, J.: Stakeholder-oriented multi-objective process optimization based on an improved genetic algorithm. Comput. Chem. Eng. 132, 106618 (2020)CrossRef
17.
Zurück zum Zitat Wu, H.; Lorenson, A.; Anderson, B.; Witteman, L.; Wu, H.; Meredig, B.; Morgan, D.: Robust fcc solute diffusion predictions from Ab-initio machine learning methods. Comput. Mater. Sci. 134, 160–165 (2017)CrossRef Wu, H.; Lorenson, A.; Anderson, B.; Witteman, L.; Wu, H.; Meredig, B.; Morgan, D.: Robust fcc solute diffusion predictions from Ab-initio machine learning methods. Comput. Mater. Sci. 134, 160–165 (2017)CrossRef
18.
Zurück zum Zitat Zhang, R.; Nie, F.; Li, X.; Wei, X.: Feature selection with multi-view data: a survey. Inf. Fus. 50, 158–167 (2019)CrossRef Zhang, R.; Nie, F.; Li, X.; Wei, X.: Feature selection with multi-view data: a survey. Inf. Fus. 50, 158–167 (2019)CrossRef
19.
Zurück zum Zitat Hossain Lipu, M.S.; Hannan, M.A.; Hussain, A.; Saad, M.H.M.: Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO with PCA feature selection. J. Renew. Sustain. Energy 9(6), 064102 (2017)CrossRef Hossain Lipu, M.S.; Hannan, M.A.; Hussain, A.; Saad, M.H.M.: Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO with PCA feature selection. J. Renew. Sustain. Energy 9(6), 064102 (2017)CrossRef
20.
Zurück zum Zitat Kalaiselvi, B.; Thangamani, M.: An efficient pearson correlation based improved random forest classification for protein structure prediction techniques. Meas. J. Int. Meas. Confed. 162, 107885 (2020)CrossRef Kalaiselvi, B.; Thangamani, M.: An efficient pearson correlation based improved random forest classification for protein structure prediction techniques. Meas. J. Int. Meas. Confed. 162, 107885 (2020)CrossRef
21.
Zurück zum Zitat Sharmin, S.; Shoyaib, M.; Ali, A.A.; Khan, M.A.H.; Chae, O.: Simultaneous feature selection and discretization based on mutual information. Pattern Recogn. 91, 162–174 (2019)CrossRef Sharmin, S.; Shoyaib, M.; Ali, A.A.; Khan, M.A.H.; Chae, O.: Simultaneous feature selection and discretization based on mutual information. Pattern Recogn. 91, 162–174 (2019)CrossRef
22.
Zurück zum Zitat Tan, J.X.; Dao, F.Y.; Lv, H.; Feng, P.M.; Ding, H.: Identifying phage virion proteins by using two-step feature selection methods. Molecules 23(8), 2000 (2018)CrossRef Tan, J.X.; Dao, F.Y.; Lv, H.; Feng, P.M.; Ding, H.: Identifying phage virion proteins by using two-step feature selection methods. Molecules 23(8), 2000 (2018)CrossRef
23.
Zurück zum Zitat Talavera, L.: An evaluation of filter and wrapper methods for feature selection in categorical clustering. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3646 LNCS, pp. 440–451. Springer (2005) Talavera, L.: An evaluation of filter and wrapper methods for feature selection in categorical clustering. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3646 LNCS, pp. 440–451. Springer (2005)
24.
Zurück zum Zitat Dong, H.; Li, T.; Ding, R.; Sun, J.: A novel hybrid genetic algorithm with granular information for feature selection and optimization. Appl. Soft Comput. J. 65, 33–46 (2018)CrossRef Dong, H.; Li, T.; Ding, R.; Sun, J.: A novel hybrid genetic algorithm with granular information for feature selection and optimization. Appl. Soft Comput. J. 65, 33–46 (2018)CrossRef
25.
Zurück zum Zitat Sakri, S.B.; Abdul Rashid, N.B.; Muhammad Zain, Z.: Particle swarm optimization feature selection for breast cancer recurrence prediction. IEEE Access 6, 29637–29647 (2018)CrossRef Sakri, S.B.; Abdul Rashid, N.B.; Muhammad Zain, Z.: Particle swarm optimization feature selection for breast cancer recurrence prediction. IEEE Access 6, 29637–29647 (2018)CrossRef
26.
Zurück zum Zitat Ghimatgar, H.; Kazemi, K.; Helfroush, M.S.; Aarabi, A.: An improved feature selection algorithm based on graph clustering and ant colony optimization. Knowledge-Based Syst. 159, 270–285 (2018)CrossRef Ghimatgar, H.; Kazemi, K.; Helfroush, M.S.; Aarabi, A.: An improved feature selection algorithm based on graph clustering and ant colony optimization. Knowledge-Based Syst. 159, 270–285 (2018)CrossRef
27.
Zurück zum Zitat Al-Tashi, Q.; Abdul Kadir, S.J.; Rais, H.M.; Mirjalili, S.; Alhussian, H.: Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access 7, 39496–39508 (2019)CrossRef Al-Tashi, Q.; Abdul Kadir, S.J.; Rais, H.M.; Mirjalili, S.; Alhussian, H.: Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access 7, 39496–39508 (2019)CrossRef
28.
Zurück zum Zitat Sayed, S.; Nassef, M.; Badr, A.; Farag, I.: A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets. Expert Syst. Appl. 121, 233–243 (2019)CrossRef Sayed, S.; Nassef, M.; Badr, A.; Farag, I.: A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets. Expert Syst. Appl. 121, 233–243 (2019)CrossRef
29.
Zurück zum Zitat Jiao, L.; Wang, L.: A novel genetic algorithm based on immunity. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 30(5), 552–561 (2000)CrossRef Jiao, L.; Wang, L.: A novel genetic algorithm based on immunity. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 30(5), 552–561 (2000)CrossRef
30.
Zurück zum Zitat Wang, H.; Bah, M.J.; Hammad, M.: Progress in outlier detection techniques: a survey. IEEE Access 7, 107964–108000 (2019)CrossRef Wang, H.; Bah, M.J.; Hammad, M.: Progress in outlier detection techniques: a survey. IEEE Access 7, 107964–108000 (2019)CrossRef
31.
Zurück zum Zitat Chen, C.; Zhou, L.; Ji, X.; He, G.; Dai, Y.; Dang, Y.: Adaptive modeling strategy integrating feature selection and random forest for fluid catalytic cracking processes. Ind. Eng. Chem. Res. 59(24), 11265–11274 (2020)CrossRef Chen, C.; Zhou, L.; Ji, X.; He, G.; Dai, Y.; Dang, Y.: Adaptive modeling strategy integrating feature selection and random forest for fluid catalytic cracking processes. Ind. Eng. Chem. Res. 59(24), 11265–11274 (2020)CrossRef
32.
Zurück zum Zitat Peng, H.; Ying, C.; Tan, S.; Hu, B.; Sun, Z.: an improved feature selection algorithm based on ant colony optimization. IEEE Access 6, 69203–69209 (2018)CrossRef Peng, H.; Ying, C.; Tan, S.; Hu, B.; Sun, Z.: an improved feature selection algorithm based on ant colony optimization. IEEE Access 6, 69203–69209 (2018)CrossRef
33.
Zurück zum Zitat Chen, C.; Lu, N.; Wang, L.; Xing, Y.: Intelligent selection and optimization method of feature variables in fluid catalytic cracking gasoline refining process. Comput. Chem. Eng. 150, 107336 (2021)CrossRef Chen, C.; Lu, N.; Wang, L.; Xing, Y.: Intelligent selection and optimization method of feature variables in fluid catalytic cracking gasoline refining process. Comput. Chem. Eng. 150, 107336 (2021)CrossRef
34.
Zurück zum Zitat Awad, M.; Khanna, R.: Support vector regression. In: Efficient Learning Machines, pp. 67–80. Apress (2015) Awad, M.; Khanna, R.: Support vector regression. In: Efficient Learning Machines, pp. 67–80. Apress (2015)
35.
Zurück zum Zitat Michalopoulos, J.; Papadokonstadakis, S.; Arampatzis, G.; Lygeros, A.: Modelling of an industrial fluid catalytic cracking unit using neural networks. Chem. Eng. Res. Des. 79(2), 137–142 (2001)CrossRef Michalopoulos, J.; Papadokonstadakis, S.; Arampatzis, G.; Lygeros, A.: Modelling of an industrial fluid catalytic cracking unit using neural networks. Chem. Eng. Res. Des. 79(2), 137–142 (2001)CrossRef
Metadaten
Titel
Integrating Artificial Immune Genetic Algorithm and Metaheuristic Ant Colony Optimizer with Two-Dose Vaccination and Modeling for Residual Fluid Catalytic Cracking Process
verfasst von
Amir Hossein Hamedi
Hossein Abolghasemi
Saeid Shokri
Hadi Jafar Nia
Farshad Moayedi
Publikationsdatum
30.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 12/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-023-07882-x

Weitere Artikel der Ausgabe 12/2023

Arabian Journal for Science and Engineering 12/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.