Skip to main content
Top
Published in: Mathematical Models and Computer Simulations 6/2019

01-11-2019

Interface-Capturing Method for Calculating Transport Equations for a Multicomponent Heterogeneous System on Fixed Eulerian Grids

Authors: Ch. Zhang, I. S. Menshov

Published in: Mathematical Models and Computer Simulations | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we consider a new numerical method for solving the transport equations for a multicomponent heterogeneous system on fixed Eulerian grids. The system consists of an arbitrary number of components. Any two components are separated by a boundary (interface). Each component is determined by a characteristic function, i.e., a volume fraction that is transported in a specified velocity field and determines the spatial instantaneous component distribution. A feature of this system is that its solution requires two conditions to be met. Firstly, the volume fraction of each component should be in the range [0, 1], and, secondly, any partial sum of volume fractions should not exceed unity. To ensure these conditions, we introduce special characteristic functions instead of volume fractions and propose solving transport equations with respect to them. It is proved that the fulfillment of these conditions is ensured when using this approach. In this case, the method is compatible with various TVD schemes (MINMOD, Van Leer, Van Albada, and Superbee) and interface-sharpening methods (Limited downwind, THINC, Anti-diffusion, and Artificial compression). The method is verified by calculating a number of test problems using all of these schemes. The numerical results show the accuracy and reliability of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Galera, P. H. Maire, and J. Breil, “A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction,” J. Comput. Phys. 229, 5755–5787 (2010).MathSciNetCrossRef S. Galera, P. H. Maire, and J. Breil, “A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction,” J. Comput. Phys. 229, 5755–5787 (2010).MathSciNetCrossRef
2.
go back to reference P. H. Maire, R. Abgrall, J. Breil, and J. Ovadia, “A cell-centered lagrangian scheme for two-dimensional compressible flow problems,” SIAM J. Sci. Comput. 29, 1781–1824 (2007).MathSciNetCrossRef P. H. Maire, R. Abgrall, J. Breil, and J. Ovadia, “A cell-centered lagrangian scheme for two-dimensional compressible flow problems,” SIAM J. Sci. Comput. 29, 1781–1824 (2007).MathSciNetCrossRef
3.
go back to reference J. Glimm, X. L. Li, Y. J. Liu, Z. L. Xu, and N. Zhao, “Conservative front tracking with improved accuracy,” SIAM J. Numer. Anal. 41, 1926–1947 (2003).MathSciNetCrossRef J. Glimm, X. L. Li, Y. J. Liu, Z. L. Xu, and N. Zhao, “Conservative front tracking with improved accuracy,” SIAM J. Numer. Anal. 41, 1926–1947 (2003).MathSciNetCrossRef
4.
go back to reference H. Terashima and G. Tryggvason, “A front-tracking/ghost-fluid method for fluid interfaces in compressible flows,” J. Comput. Phys. 228, 4012–4037 (2009).CrossRef H. Terashima and G. Tryggvason, “A front-tracking/ghost-fluid method for fluid interfaces in compressible flows,” J. Comput. Phys. 228, 4012–4037 (2009).CrossRef
5.
go back to reference W. Mulder, S. Osher, and J. A. Sethian, “Computing interface motion in compressible gas dynamics,” J. Comput. Phys. 100, 209–228 (1992).MathSciNetCrossRef W. Mulder, S. Osher, and J. A. Sethian, “Computing interface motion in compressible gas dynamics,” J. Comput. Phys. 100, 209–228 (1992).MathSciNetCrossRef
6.
go back to reference R. Abgrall, “How to prevent pressure oscillations in multicomponent flow calculations: a quasi-conservative approach,” J. Comput. Phys. 125, 150–160 (1996).MathSciNetCrossRef R. Abgrall, “How to prevent pressure oscillations in multicomponent flow calculations: a quasi-conservative approach,” J. Comput. Phys. 125, 150–160 (1996).MathSciNetCrossRef
7.
go back to reference R. Saurel and R. Abgrall, “A multiphase Godunov method for compressible multifluid and multiphase flows,” J. Comput. Phys. 150 (2), 425–467 (1999).MathSciNetCrossRef R. Saurel and R. Abgrall, “A multiphase Godunov method for compressible multifluid and multiphase flows,” J. Comput. Phys. 150 (2), 425–467 (1999).MathSciNetCrossRef
8.
go back to reference I. Menshov and P. Zakharov, “On the composite Riemann problem for multi-material fluid flows,” Int. J. Numer. Methods Fluids 76, 109–127 (2014).MathSciNetCrossRef I. Menshov and P. Zakharov, “On the composite Riemann problem for multi-material fluid flows,” Int. J. Numer. Methods Fluids 76, 109–127 (2014).MathSciNetCrossRef
9.
go back to reference G. Allaire, S. Clerc, and S. Kokh, “A five-equation model for the simulation of interfaces between compressible fluids,” J. Comput. Phys. 181, 577–616 (2002).MathSciNetCrossRef G. Allaire, S. Clerc, and S. Kokh, “A five-equation model for the simulation of interfaces between compressible fluids,” J. Comput. Phys. 181, 577–616 (2002).MathSciNetCrossRef
10.
go back to reference S. Jaouen and F. Lagoutière, “Numerical transport of an arbitrary number of components,” Comput. Methods Appl. Math. 196, 3127–3140 (2007).MathSciNetMATH S. Jaouen and F. Lagoutière, “Numerical transport of an arbitrary number of components,” Comput. Methods Appl. Math. 196, 3127–3140 (2007).MathSciNetMATH
11.
go back to reference B. Després and F. Lagoutière, “Contact discontinuity capturing schemes for linear advection, compressible gas dynamics,” J. Sci. Comput. 16, 479–524 (2001).MathSciNetCrossRef B. Després and F. Lagoutière, “Contact discontinuity capturing schemes for linear advection, compressible gas dynamics,” J. Sci. Comput. 16, 479–524 (2001).MathSciNetCrossRef
12.
go back to reference F. Xiao, Y. Honma, and T. Kono, “A simple algebraic interface capturing scheme using hyperbolic tangent function,” Int. J. Numer. Mech. Fluids 48, 1023–1040 (2005).CrossRef F. Xiao, Y. Honma, and T. Kono, “A simple algebraic interface capturing scheme using hyperbolic tangent function,” Int. J. Numer. Mech. Fluids 48, 1023–1040 (2005).CrossRef
13.
go back to reference K. K. So, X. Y. Hu, and N. A. Adams, “Anti-diffusion method for interface steepening in two-phase incompressible flow,” J. Comput. Phys. 230, 5155–5177 (2011).MathSciNetCrossRef K. K. So, X. Y. Hu, and N. A. Adams, “Anti-diffusion method for interface steepening in two-phase incompressible flow,” J. Comput. Phys. 230, 5155–5177 (2011).MathSciNetCrossRef
14.
go back to reference K. K. So, X. Y. Hu, and N. A. Adams, “Anti-diffusion interface sharpening technique for two-phase compressible flow simulations,” J. Comput. Phys. 231, 4304–4323 (2012).MathSciNetCrossRef K. K. So, X. Y. Hu, and N. A. Adams, “Anti-diffusion interface sharpening technique for two-phase compressible flow simulations,” J. Comput. Phys. 231, 4304–4323 (2012).MathSciNetCrossRef
15.
go back to reference A. Harten, “The artificial compression method for computation of shocks and contact discontinuities, I: Single conservation laws,” Commun. Pure Appl. Math 30, 611–638 (1977).MathSciNetCrossRef A. Harten, “The artificial compression method for computation of shocks and contact discontinuities, I: Single conservation laws,” Commun. Pure Appl. Math 30, 611–638 (1977).MathSciNetCrossRef
16.
go back to reference A. Harten, “The artificial compression method for computation of shocks and contact discontinuities, III: Self-adjusting hybrid schemes,” Math. Comput. 32, 363–389 (1978).MathSciNetMATH A. Harten, “The artificial compression method for computation of shocks and contact discontinuities, III: Self-adjusting hybrid schemes,” Math. Comput. 32, 363–389 (1978).MathSciNetMATH
Metadata
Title
Interface-Capturing Method for Calculating Transport Equations for a Multicomponent Heterogeneous System on Fixed Eulerian Grids
Authors
Ch. Zhang
I. S. Menshov
Publication date
01-11-2019
Publisher
Pleiades Publishing
Published in
Mathematical Models and Computer Simulations / Issue 6/2019
Print ISSN: 2070-0482
Electronic ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048219060012

Other articles of this Issue 6/2019

Mathematical Models and Computer Simulations 6/2019 Go to the issue

Premium Partner