Skip to main content
Top
Published in: Mathematical Models and Computer Simulations 6/2019

01-11-2019

Simulation of Generalized Nonlinear Fourth Order Partial Differential Equation with Quintic Trigonometric Differential Quadrature Method

Authors: Geeta Arora, Varun Joshi

Published in: Mathematical Models and Computer Simulations | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper aims to focus on the implementation of a new approach, quintic trigonometric B-spline basis functions in differential quadrature method to find numerical solution of generalized fourth order partial differential equations with nonlinearity involved. The obtained results using this approach are presented in comparison with available exact and numerical solutions obtained by other researchers. The obtained solutions are in agreement with the available exact solutions and even better than the solutions proposed by the other schemes in the literature. The applicability of the scheme are demonstrated by different eight test problems for the discussed equations that are simulated, for calculating errors like L2, \({{L}_{\infty }}\), RMS and GRE. To visualize the same, solutions are also presented graphically along with the exact solutions. Scheme is shown to be unconditionally stable with the help of eigenvalues, which demonstrates the consistency of the proposed numerical scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
15.
go back to reference M. Dehghan and A. Shokri, “A numerical method for KdV equation using collocation and radial basis functions,” Nonlin. Dyn. 50, pp. 111–120 (2007).MathSciNetCrossRef M. Dehghan and A. Shokri, “A numerical method for KdV equation using collocation and radial basis functions,” Nonlin. Dyn. 50, pp. 111–120 (2007).MathSciNetCrossRef
35.
go back to reference R. C. Mittal and Sumita Dahiya, “A quintic B-spline based differential quadrature method for mumerical solution of Kuramoto-Sivashinsky equation,” Int. J. Nonlin. Sci. Num. 18, 103–114 (2017).MathSciNetCrossRef R. C. Mittal and Sumita Dahiya, “A quintic B-spline based differential quadrature method for mumerical solution of Kuramoto-Sivashinsky equation,” Int. J. Nonlin. Sci. Num. 18, 103–114 (2017).MathSciNetCrossRef
36.
go back to reference J. R. Spiteri and S. J. Ruuth, “A new class of optimal high-order strongstability-preserving time-stepping schemes,” SIAM J. Numer. Anal. 40, 469–491 (2002).MathSciNetCrossRef J. R. Spiteri and S. J. Ruuth, “A new class of optimal high-order strongstability-preserving time-stepping schemes,” SIAM J. Numer. Anal. 40, 469–491 (2002).MathSciNetCrossRef
37.
38.
go back to reference W. van Saarloos, “Dynamical velocity selection: marginal stability,” Phys. Rev. Lett. 58, 2571–2574 (1987).CrossRef W. van Saarloos, “Dynamical velocity selection: marginal stability,” Phys. Rev. Lett. 58, 2571–2574 (1987).CrossRef
39.
go back to reference G. T. Dee and W. van Saarloos, “Bistable systems with propagating fronts leading to pattern formation,” Phys. Rev. Lett. 60, 2641–2644 (1988).CrossRef G. T. Dee and W. van Saarloos, “Bistable systems with propagating fronts leading to pattern formation,” Phys. Rev. Lett. 60, 2641–2644 (1988).CrossRef
40.
go back to reference S. W. Van, “Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection,” Phys. Rev. Lett. A 37, 211–229 (1988).MathSciNetCrossRef S. W. Van, “Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection,” Phys. Rev. Lett. A 37, 211–229 (1988).MathSciNetCrossRef
41.
go back to reference W. Zimmerman, “Propagating fronts near a Lifschitz point,” Phys. Rev. Lett. 66, 1546 (1991).CrossRef W. Zimmerman, “Propagating fronts near a Lifschitz point,” Phys. Rev. Lett. 66, 1546 (1991).CrossRef
42.
go back to reference R. M. Hornreich, M. Luban, and S. Shtrikman, “Critical behaviour at the onset of k-space instability on the k line,” Phys. Rev. Lett. 35, 1678–1681 (1975).CrossRef R. M. Hornreich, M. Luban, and S. Shtrikman, “Critical behaviour at the onset of k-space instability on the k line,” Phys. Rev. Lett. 35, 1678–1681 (1975).CrossRef
43.
go back to reference V. Rottschafer and A. Doelman, “On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation,” Phys. D (Amsterdam, Neth.) 118, 261–292 (1998). V. Rottschafer and A. Doelman, “On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation,” Phys. D (Amsterdam, Neth.) 118, 261–292 (1998).
44.
go back to reference L. A. Peletier and W. C. Troy, “A topological shooting method and the existence of kinks of the extended Fisher-Kolmogorov equation,” Topol. Methods Nonlin. Anal. 6, 331–355 (1995).MathSciNetCrossRef L. A. Peletier and W. C. Troy, “A topological shooting method and the existence of kinks of the extended Fisher-Kolmogorov equation,” Topol. Methods Nonlin. Anal. 6, 331–355 (1995).MathSciNetCrossRef
45.
go back to reference L. A. Peletier and W. C. Troy, “Chaotic spatial patterns described by the extended Fisher-Kolmogorov equation,” J. Differ. Equat. 129, 458–508 (1996).MathSciNetCrossRef L. A. Peletier and W. C. Troy, “Chaotic spatial patterns described by the extended Fisher-Kolmogorov equation,” J. Differ. Equat. 129, 458–508 (1996).MathSciNetCrossRef
46.
go back to reference R. D. Benguria and M. C. Depassier, “On the transition from pulled to pushed monotonic fronts of the extended Fisher-Kolmogorov equation,” Phys. A (Amsterdam, Neth.) 356, 61–65 (2005). R. D. Benguria and M. C. Depassier, “On the transition from pulled to pushed monotonic fronts of the extended Fisher-Kolmogorov equation,” Phys. A (Amsterdam, Neth.) 356, 61–65 (2005).
47.
go back to reference P. Danumjaya and A. K. Pani, “Finite element methods for the extended Fisher-Kolmogorov equation,” Research Report No. IMGRR-2002-3 (Ind. Math. Group, Dep. Math., IIT, Bombay, 2002). P. Danumjaya and A. K. Pani, “Finite element methods for the extended Fisher-Kolmogorov equation,” Research Report No. IMGRR-2002-3 (Ind. Math. Group, Dep. Math., IIT, Bombay, 2002).
48.
go back to reference M. Aghamohamadi, J. Rashidinia, and R. Ezzati, “Tension spline method for solution of non-linear Fisher equation,” Appl. Math. Comput. 249, 399–407 (2014).MathSciNetMATH M. Aghamohamadi, J. Rashidinia, and R. Ezzati, “Tension spline method for solution of non-linear Fisher equation,” Appl. Math. Comput. 249, 399–407 (2014).MathSciNetMATH
61.
go back to reference R. Bellman, B. Kashef, and J. Casti, “Differential quadrature: a technique for the rapid solution of nonlinear differential equations,” J. Comput. Phys. 10, 40–52 (1972).MathSciNetCrossRef R. Bellman, B. Kashef, and J. Casti, “Differential quadrature: a technique for the rapid solution of nonlinear differential equations,” J. Comput. Phys. 10, 40–52 (1972).MathSciNetCrossRef
62.
go back to reference J. R. Quan and C. T. Chang, “New insights in solving distributed system equations by the quadrature methods-I,” Comput. Chem. Eng. 13, 779–788 (1989).CrossRef J. R. Quan and C. T. Chang, “New insights in solving distributed system equations by the quadrature methods-I,” Comput. Chem. Eng. 13, 779–788 (1989).CrossRef
63.
go back to reference J. R. Quan and C. T. Chang, “New insights in solving distributed system equations by the quadrature methods-II,” Comput. Chem. Eng. 13, 1017–1024 (1989).CrossRef J. R. Quan and C. T. Chang, “New insights in solving distributed system equations by the quadrature methods-II,” Comput. Chem. Eng. 13, 1017–1024 (1989).CrossRef
64.
go back to reference C. Shu and Y. T. Chew, “Fourier expansion-based differential quadrature and its application to Helmholtz eigenvalue problems,” Commun. Numer. Methods Eng. 13, 643–653 (1997).MathSciNetCrossRef C. Shu and Y. T. Chew, “Fourier expansion-based differential quadrature and its application to Helmholtz eigenvalue problems,” Commun. Numer. Methods Eng. 13, 643–653 (1997).MathSciNetCrossRef
65.
go back to reference C. Shu and H. Xue, “Explicit computation of weighting coefcients in the harmonic differential quadrature,” J. Sound Vib. 204, 549–555 (1997).CrossRef C. Shu and H. Xue, “Explicit computation of weighting coefcients in the harmonic differential quadrature,” J. Sound Vib. 204, 549–555 (1997).CrossRef
66.
go back to reference C. Shu and B. E. Richards, “Application of generalized differential quadrature to solve two dimensional incompressible Navier Stokes equations,” Int. J. Numer. Meth. Fluids 15, 791–798 (1992).CrossRef C. Shu and B. E. Richards, “Application of generalized differential quadrature to solve two dimensional incompressible Navier Stokes equations,” Int. J. Numer. Meth. Fluids 15, 791–798 (1992).CrossRef
67.
go back to reference M. K. Jain, Numerical Solution of Differential Equations, 2nd ed. (Wiley, New York, 1983). M. K. Jain, Numerical Solution of Differential Equations, 2nd ed. (Wiley, New York, 1983).
Metadata
Title
Simulation of Generalized Nonlinear Fourth Order Partial Differential Equation with Quintic Trigonometric Differential Quadrature Method
Authors
Geeta Arora
Varun Joshi
Publication date
01-11-2019
Publisher
Pleiades Publishing
Published in
Mathematical Models and Computer Simulations / Issue 6/2019
Print ISSN: 2070-0482
Electronic ISSN: 2070-0490
DOI
https://doi.org/10.1134/S207004821906005X

Other articles of this Issue 6/2019

Mathematical Models and Computer Simulations 6/2019 Go to the issue

Premium Partner