Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 6/2019

01.11.2019

Simulation of Generalized Nonlinear Fourth Order Partial Differential Equation with Quintic Trigonometric Differential Quadrature Method

verfasst von: Geeta Arora, Varun Joshi

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper aims to focus on the implementation of a new approach, quintic trigonometric B-spline basis functions in differential quadrature method to find numerical solution of generalized fourth order partial differential equations with nonlinearity involved. The obtained results using this approach are presented in comparison with available exact and numerical solutions obtained by other researchers. The obtained solutions are in agreement with the available exact solutions and even better than the solutions proposed by the other schemes in the literature. The applicability of the scheme are demonstrated by different eight test problems for the discussed equations that are simulated, for calculating errors like L2, \({{L}_{\infty }}\), RMS and GRE. To visualize the same, solutions are also presented graphically along with the exact solutions. Scheme is shown to be unconditionally stable with the help of eigenvalues, which demonstrates the consistency of the proposed numerical scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
15.
Zurück zum Zitat M. Dehghan and A. Shokri, “A numerical method for KdV equation using collocation and radial basis functions,” Nonlin. Dyn. 50, pp. 111–120 (2007).MathSciNetCrossRef M. Dehghan and A. Shokri, “A numerical method for KdV equation using collocation and radial basis functions,” Nonlin. Dyn. 50, pp. 111–120 (2007).MathSciNetCrossRef
35.
Zurück zum Zitat R. C. Mittal and Sumita Dahiya, “A quintic B-spline based differential quadrature method for mumerical solution of Kuramoto-Sivashinsky equation,” Int. J. Nonlin. Sci. Num. 18, 103–114 (2017).MathSciNetCrossRef R. C. Mittal and Sumita Dahiya, “A quintic B-spline based differential quadrature method for mumerical solution of Kuramoto-Sivashinsky equation,” Int. J. Nonlin. Sci. Num. 18, 103–114 (2017).MathSciNetCrossRef
36.
Zurück zum Zitat J. R. Spiteri and S. J. Ruuth, “A new class of optimal high-order strongstability-preserving time-stepping schemes,” SIAM J. Numer. Anal. 40, 469–491 (2002).MathSciNetCrossRef J. R. Spiteri and S. J. Ruuth, “A new class of optimal high-order strongstability-preserving time-stepping schemes,” SIAM J. Numer. Anal. 40, 469–491 (2002).MathSciNetCrossRef
37.
38.
Zurück zum Zitat W. van Saarloos, “Dynamical velocity selection: marginal stability,” Phys. Rev. Lett. 58, 2571–2574 (1987).CrossRef W. van Saarloos, “Dynamical velocity selection: marginal stability,” Phys. Rev. Lett. 58, 2571–2574 (1987).CrossRef
39.
Zurück zum Zitat G. T. Dee and W. van Saarloos, “Bistable systems with propagating fronts leading to pattern formation,” Phys. Rev. Lett. 60, 2641–2644 (1988).CrossRef G. T. Dee and W. van Saarloos, “Bistable systems with propagating fronts leading to pattern formation,” Phys. Rev. Lett. 60, 2641–2644 (1988).CrossRef
40.
Zurück zum Zitat S. W. Van, “Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection,” Phys. Rev. Lett. A 37, 211–229 (1988).MathSciNetCrossRef S. W. Van, “Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection,” Phys. Rev. Lett. A 37, 211–229 (1988).MathSciNetCrossRef
41.
Zurück zum Zitat W. Zimmerman, “Propagating fronts near a Lifschitz point,” Phys. Rev. Lett. 66, 1546 (1991).CrossRef W. Zimmerman, “Propagating fronts near a Lifschitz point,” Phys. Rev. Lett. 66, 1546 (1991).CrossRef
42.
Zurück zum Zitat R. M. Hornreich, M. Luban, and S. Shtrikman, “Critical behaviour at the onset of k-space instability on the k line,” Phys. Rev. Lett. 35, 1678–1681 (1975).CrossRef R. M. Hornreich, M. Luban, and S. Shtrikman, “Critical behaviour at the onset of k-space instability on the k line,” Phys. Rev. Lett. 35, 1678–1681 (1975).CrossRef
43.
Zurück zum Zitat V. Rottschafer and A. Doelman, “On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation,” Phys. D (Amsterdam, Neth.) 118, 261–292 (1998). V. Rottschafer and A. Doelman, “On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation,” Phys. D (Amsterdam, Neth.) 118, 261–292 (1998).
44.
Zurück zum Zitat L. A. Peletier and W. C. Troy, “A topological shooting method and the existence of kinks of the extended Fisher-Kolmogorov equation,” Topol. Methods Nonlin. Anal. 6, 331–355 (1995).MathSciNetCrossRef L. A. Peletier and W. C. Troy, “A topological shooting method and the existence of kinks of the extended Fisher-Kolmogorov equation,” Topol. Methods Nonlin. Anal. 6, 331–355 (1995).MathSciNetCrossRef
45.
Zurück zum Zitat L. A. Peletier and W. C. Troy, “Chaotic spatial patterns described by the extended Fisher-Kolmogorov equation,” J. Differ. Equat. 129, 458–508 (1996).MathSciNetCrossRef L. A. Peletier and W. C. Troy, “Chaotic spatial patterns described by the extended Fisher-Kolmogorov equation,” J. Differ. Equat. 129, 458–508 (1996).MathSciNetCrossRef
46.
Zurück zum Zitat R. D. Benguria and M. C. Depassier, “On the transition from pulled to pushed monotonic fronts of the extended Fisher-Kolmogorov equation,” Phys. A (Amsterdam, Neth.) 356, 61–65 (2005). R. D. Benguria and M. C. Depassier, “On the transition from pulled to pushed monotonic fronts of the extended Fisher-Kolmogorov equation,” Phys. A (Amsterdam, Neth.) 356, 61–65 (2005).
47.
Zurück zum Zitat P. Danumjaya and A. K. Pani, “Finite element methods for the extended Fisher-Kolmogorov equation,” Research Report No. IMGRR-2002-3 (Ind. Math. Group, Dep. Math., IIT, Bombay, 2002). P. Danumjaya and A. K. Pani, “Finite element methods for the extended Fisher-Kolmogorov equation,” Research Report No. IMGRR-2002-3 (Ind. Math. Group, Dep. Math., IIT, Bombay, 2002).
48.
Zurück zum Zitat M. Aghamohamadi, J. Rashidinia, and R. Ezzati, “Tension spline method for solution of non-linear Fisher equation,” Appl. Math. Comput. 249, 399–407 (2014).MathSciNetMATH M. Aghamohamadi, J. Rashidinia, and R. Ezzati, “Tension spline method for solution of non-linear Fisher equation,” Appl. Math. Comput. 249, 399–407 (2014).MathSciNetMATH
61.
Zurück zum Zitat R. Bellman, B. Kashef, and J. Casti, “Differential quadrature: a technique for the rapid solution of nonlinear differential equations,” J. Comput. Phys. 10, 40–52 (1972).MathSciNetCrossRef R. Bellman, B. Kashef, and J. Casti, “Differential quadrature: a technique for the rapid solution of nonlinear differential equations,” J. Comput. Phys. 10, 40–52 (1972).MathSciNetCrossRef
62.
Zurück zum Zitat J. R. Quan and C. T. Chang, “New insights in solving distributed system equations by the quadrature methods-I,” Comput. Chem. Eng. 13, 779–788 (1989).CrossRef J. R. Quan and C. T. Chang, “New insights in solving distributed system equations by the quadrature methods-I,” Comput. Chem. Eng. 13, 779–788 (1989).CrossRef
63.
Zurück zum Zitat J. R. Quan and C. T. Chang, “New insights in solving distributed system equations by the quadrature methods-II,” Comput. Chem. Eng. 13, 1017–1024 (1989).CrossRef J. R. Quan and C. T. Chang, “New insights in solving distributed system equations by the quadrature methods-II,” Comput. Chem. Eng. 13, 1017–1024 (1989).CrossRef
64.
Zurück zum Zitat C. Shu and Y. T. Chew, “Fourier expansion-based differential quadrature and its application to Helmholtz eigenvalue problems,” Commun. Numer. Methods Eng. 13, 643–653 (1997).MathSciNetCrossRef C. Shu and Y. T. Chew, “Fourier expansion-based differential quadrature and its application to Helmholtz eigenvalue problems,” Commun. Numer. Methods Eng. 13, 643–653 (1997).MathSciNetCrossRef
65.
Zurück zum Zitat C. Shu and H. Xue, “Explicit computation of weighting coefcients in the harmonic differential quadrature,” J. Sound Vib. 204, 549–555 (1997).CrossRef C. Shu and H. Xue, “Explicit computation of weighting coefcients in the harmonic differential quadrature,” J. Sound Vib. 204, 549–555 (1997).CrossRef
66.
Zurück zum Zitat C. Shu and B. E. Richards, “Application of generalized differential quadrature to solve two dimensional incompressible Navier Stokes equations,” Int. J. Numer. Meth. Fluids 15, 791–798 (1992).CrossRef C. Shu and B. E. Richards, “Application of generalized differential quadrature to solve two dimensional incompressible Navier Stokes equations,” Int. J. Numer. Meth. Fluids 15, 791–798 (1992).CrossRef
67.
Zurück zum Zitat M. K. Jain, Numerical Solution of Differential Equations, 2nd ed. (Wiley, New York, 1983). M. K. Jain, Numerical Solution of Differential Equations, 2nd ed. (Wiley, New York, 1983).
Metadaten
Titel
Simulation of Generalized Nonlinear Fourth Order Partial Differential Equation with Quintic Trigonometric Differential Quadrature Method
verfasst von
Geeta Arora
Varun Joshi
Publikationsdatum
01.11.2019
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 6/2019
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S207004821906005X

Weitere Artikel der Ausgabe 6/2019

Mathematical Models and Computer Simulations 6/2019 Zur Ausgabe

Premium Partner