Skip to main content
Top

2007 | OriginalPaper | Chapter

31. Interfacial Forces and Spectroscopic Study of Confined Fluids

Authors : Y. Zhu, Prof., Ashis Mukhopadhyay, Prof., Steve Granick, Prof.

Published in: Springer Handbook of Nanotechnology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter we discuss three specific issues which are relevant for liquids in intimate contact with solid surfaces. (1) Studies of the hydrodynamic flow of simple and complex fluids within ultra-narrow channels show the effects of flow rate, surface roughness and fluid–surface interaction on the determination of the boundary condition. We draw attention to the importance of the microscopic particulars to the discovery of what boundary condition is appropriate for solving continuum equations and the potential to capitalize on slip at the wall for purposes of materials engineering. (2) We address the long-standing question of the structure of aqueous films near a hydrophobic surface. When water was confined between adjoining hydrophobic and hydrophilic surfaces (a Janus interface), giant fluctuations in shear responses were observed, which implies some kind of flickering, fluctuating complex at the water–hydrophobic interface. (3) Finally we discuss recent experiments that augment friction studies by measurement of diffusion, using fluorescence correlation spectroscopy (FCS). Here spatially resolved measurements showed that translation diffusion slows exponentially with increasing mechanical pressure from the edges of a Hertzian contact toward the center, accompanied by increasingly heterogeneous dynamical responses. This dynamical probe of how liquids order in molecularly thin films fails to support the hypothesis that shear produces a melting transition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
31.1.
go back to reference J. N. Israelachvili: Intermolecular and Surface Forces, 2nd edn. (Academic, New York 1991) J. N. Israelachvili: Intermolecular and Surface Forces, 2nd edn. (Academic, New York 1991)
31.2.
go back to reference B. Bhushan, J. N. Israelachvili, U. Landman: Nanotribology—Friction, wear and lubrication at the atomic-scale, Nature 374, 607–616 (1995)CrossRef B. Bhushan, J. N. Israelachvili, U. Landman: Nanotribology—Friction, wear and lubrication at the atomic-scale, Nature 374, 607–616 (1995)CrossRef
31.3.
go back to reference J. M. Drake, J. Klafter, P. E. Levitz, R. M. Overney, M. Urbakh: Dynamics in Small Confining Systems V (Materials Research Society, Warrendale 2000) J. M. Drake, J. Klafter, P. E. Levitz, R. M. Overney, M. Urbakh: Dynamics in Small Confining Systems V (Materials Research Society, Warrendale 2000)
31.4.
31.5.
go back to reference C. M. Mate, G. M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59, 1942–1945 (1987)CrossRef C. M. Mate, G. M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59, 1942–1945 (1987)CrossRef
31.6.
go back to reference G. Meyer, N. M. Amer: Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope, Appl. Phys. Lett. 57, 2089–2091 (1990)CrossRef G. Meyer, N. M. Amer: Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope, Appl. Phys. Lett. 57, 2089–2091 (1990)CrossRef
31.7.
go back to reference S. Granick, Y. Zhu, H. Lee: Slippery questions about complex fluids flowing past solids, Nature Mater. 2, 221–227 (2003)CrossRef S. Granick, Y. Zhu, H. Lee: Slippery questions about complex fluids flowing past solids, Nature Mater. 2, 221–227 (2003)CrossRef
31.8.
go back to reference Y. Zhu, S. Granick: Limits of the hydrodynamic no-slip boundary condition, Phys. Rev. Lett. 88, 106102–(1–4) (2002)CrossRef Y. Zhu, S. Granick: Limits of the hydrodynamic no-slip boundary condition, Phys. Rev. Lett. 88, 106102–(1–4) (2002)CrossRef
31.9.
go back to reference Y. Zhu, S. Granick: Rate-dependent slip of Newtonian liquid at smooth surfaces, Phys. Rev. Lett. 87, 096105–(1–4) (2001)CrossRef Y. Zhu, S. Granick: Rate-dependent slip of Newtonian liquid at smooth surfaces, Phys. Rev. Lett. 87, 096105–(1–4) (2001)CrossRef
31.10.
go back to reference B. S. Massey: Mechanics of Fluids, 6th edn. (Chapman Hall, London 1989) B. S. Massey: Mechanics of Fluids, 6th edn. (Chapman Hall, London 1989)
31.11.
go back to reference P.-G. de Gennes: Viscometric flows of tangled polymers, C. R. Acad. Sci. B. Phys. 288, 219 (1979) P.-G. de Gennes: Viscometric flows of tangled polymers, C. R. Acad. Sci. B. Phys. 288, 219 (1979)
31.12.
go back to reference L. Léger, E. Raphael, H. Hervet: Surface-anchored polymer chains: Their role in adhesion and friction, Adv. Polym. Sci. 138, 185–225 (1999)CrossRef L. Léger, E. Raphael, H. Hervet: Surface-anchored polymer chains: Their role in adhesion and friction, Adv. Polym. Sci. 138, 185–225 (1999)CrossRef
31.13.
go back to reference O. I. Vinogradova: Slippage of water over hydrophobic surfaces, Int. J. Miner. Process 56, 31–60 (1999)CrossRef O. I. Vinogradova: Slippage of water over hydrophobic surfaces, Int. J. Miner. Process 56, 31–60 (1999)CrossRef
31.14.
go back to reference C. Mak, J. Krim: Quartz-crystal microbalance studies of the velocity dependence of interfacial friction, Phys. Rev. B 58, 5157–5179 (1998)CrossRef C. Mak, J. Krim: Quartz-crystal microbalance studies of the velocity dependence of interfacial friction, Phys. Rev. B 58, 5157–5179 (1998)CrossRef
31.15.
go back to reference S. M. Tholen, J. M. Parpia: Slip and the effect of He-4 at the He-3–silicon interface, Phys. Rev. Lett. 67, 334–337 (1991)CrossRef S. M. Tholen, J. M. Parpia: Slip and the effect of He-4 at the He-3–silicon interface, Phys. Rev. Lett. 67, 334–337 (1991)CrossRef
31.16.
go back to reference C. Huh, L. E. Scriven: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci. 35, 85–101 (1971)CrossRef C. Huh, L. E. Scriven: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci. 35, 85–101 (1971)CrossRef
31.17.
go back to reference G. Reiter, A. L. Demirel, S. Granick: From static to kinetic friction in confined liquid-films, Science 263, 1741–1744 (1994)CrossRef G. Reiter, A. L. Demirel, S. Granick: From static to kinetic friction in confined liquid-films, Science 263, 1741–1744 (1994)CrossRef
31.18.
go back to reference G. Reiter, A. L. Demirel, J. S. Peanasky, L. Cai, S. Granick: Stick to slip transition and adhesion of lubricated surfaces in moving contact, J. Chem. Phys. 101, 2606–2615 (1994)CrossRef G. Reiter, A. L. Demirel, J. S. Peanasky, L. Cai, S. Granick: Stick to slip transition and adhesion of lubricated surfaces in moving contact, J. Chem. Phys. 101, 2606–2615 (1994)CrossRef
31.19.
go back to reference N. V. Churaev, V. D. Sobolev, A. N. Somov: Slippage of liquids over lyophobic solid surfaces, J. Colloid Interface Sci. 97, 574–581 (1984)CrossRef N. V. Churaev, V. D. Sobolev, A. N. Somov: Slippage of liquids over lyophobic solid surfaces, J. Colloid Interface Sci. 97, 574–581 (1984)CrossRef
31.20.
go back to reference D. Y. C. Chan, R. G. Horn: The drainage of thin liquid films between solid surfaces, J. Chem. Phys. 83, 5311–5324 (1985)CrossRef D. Y. C. Chan, R. G. Horn: The drainage of thin liquid films between solid surfaces, J. Chem. Phys. 83, 5311–5324 (1985)CrossRef
31.21.
go back to reference J. N. Israelachvili: Measurement of the viscosity of liquids in very thin films, J. Colloid Interface Sci. 110, 263–271 (1986)CrossRef J. N. Israelachvili: Measurement of the viscosity of liquids in very thin films, J. Colloid Interface Sci. 110, 263–271 (1986)CrossRef
31.22.
go back to reference J. F. Nye: A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation, Proc. Roy. Soc. A 311, 445–467 (1969)CrossRef J. F. Nye: A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation, Proc. Roy. Soc. A 311, 445–467 (1969)CrossRef
31.23.
go back to reference S. Richardson: On the no-slip boundary condition, J. Fluid Mech. 59, 707–719 (1973)CrossRef S. Richardson: On the no-slip boundary condition, J. Fluid Mech. 59, 707–719 (1973)CrossRef
31.24.
go back to reference K. M. Jansons: Determination of the macroscopic (partial) slip boundary condition for a viscous flow over a randomly rough surface with a perfect slip microscopic boundary condition, Phys. Fluids 31, 15–17 (1988)CrossRef K. M. Jansons: Determination of the macroscopic (partial) slip boundary condition for a viscous flow over a randomly rough surface with a perfect slip microscopic boundary condition, Phys. Fluids 31, 15–17 (1988)CrossRef
31.25.
go back to reference P. A. Thompson, M. O. Robbins: Shear flow near solids: epitaxial order and flow boundary condition, Phys. Rev. A 41, 6830–6839 (1990)CrossRef P. A. Thompson, M. O. Robbins: Shear flow near solids: epitaxial order and flow boundary condition, Phys. Rev. A 41, 6830–6839 (1990)CrossRef
31.26.
go back to reference P. A. Thompson, S. Troian: A general boundary condition for liquid flow at solid surfaces, Nature 389, 360–362 (1997)CrossRef P. A. Thompson, S. Troian: A general boundary condition for liquid flow at solid surfaces, Nature 389, 360–362 (1997)CrossRef
31.27.
go back to reference J.-L. Barrat, L. Bocquet: Large slip effect at a nonwetting fluid–solid interface, Phys. Rev. Lett. 82, 4671–4674 (1999)CrossRef J.-L. Barrat, L. Bocquet: Large slip effect at a nonwetting fluid–solid interface, Phys. Rev. Lett. 82, 4671–4674 (1999)CrossRef
31.28.
go back to reference R. Pit, H. Hervet, L. Léger: Direct experimental evidence of slip in hexadecane–solid interfaces, Phys. Rev. Lett. 85, 980–983 (2000)CrossRef R. Pit, H. Hervet, L. Léger: Direct experimental evidence of slip in hexadecane–solid interfaces, Phys. Rev. Lett. 85, 980–983 (2000)CrossRef
31.29.
go back to reference V. S. J. Craig, C. Neto, D. R. M. Williams: Shear-dependent boundary slip in aqueous Newtonian liquid, Phys. Rev. Lett. 87, 54504–(1–4) (2001)CrossRef V. S. J. Craig, C. Neto, D. R. M. Williams: Shear-dependent boundary slip in aqueous Newtonian liquid, Phys. Rev. Lett. 87, 54504–(1–4) (2001)CrossRef
31.30.
go back to reference O. A. Kiseleva, V. D. Sobolev, N. V. Churaev: Slippage of the aqueous solutions of cetyltriimethylammonium bromide during flow in thin quartz capillaries, Colloid J. 61, 263–264 (1999) O. A. Kiseleva, V. D. Sobolev, N. V. Churaev: Slippage of the aqueous solutions of cetyltriimethylammonium bromide during flow in thin quartz capillaries, Colloid J. 61, 263–264 (1999)
31.31.
go back to reference Y. Zhu, S. Granick: Apparent slip of Newtonian fluids past adsorbed polymer layers, Macromolecules 36, 4658–4663 (2002)CrossRef Y. Zhu, S. Granick: Apparent slip of Newtonian fluids past adsorbed polymer layers, Macromolecules 36, 4658–4663 (2002)CrossRef
31.32.
go back to reference Y. Zhu, S. Granick: The no slip boundary condition switches to partial slip when the fluid contains surfactant, Langmuir 18, 10058–10063 (2002)CrossRef Y. Zhu, S. Granick: The no slip boundary condition switches to partial slip when the fluid contains surfactant, Langmuir 18, 10058–10063 (2002)CrossRef
31.33.
go back to reference J. Baudry, E. Charlaix, A. Tonck, D. Mazuyer: Experimental evidence of a large slip effect at a nonwetting fluid–solid interface, Langmuir 17, 5232–5236 (2002)CrossRef J. Baudry, E. Charlaix, A. Tonck, D. Mazuyer: Experimental evidence of a large slip effect at a nonwetting fluid–solid interface, Langmuir 17, 5232–5236 (2002)CrossRef
31.34.
go back to reference D. C. Tretheway, C. D. Meinhart: Apparent fluid slip at hydrophobic microchannel walls, Phys. Fluids 14, L9–L12 (2002)CrossRef D. C. Tretheway, C. D. Meinhart: Apparent fluid slip at hydrophobic microchannel walls, Phys. Fluids 14, L9–L12 (2002)CrossRef
31.35.
go back to reference H. A. Barnes: A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: Its cause, character, and cure, J. Non-Newtonian Fluid Mech. 56, 221–251 (1995)CrossRef H. A. Barnes: A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: Its cause, character, and cure, J. Non-Newtonian Fluid Mech. 56, 221–251 (1995)CrossRef
31.36.
go back to reference E. C. Achilleos, G. Georgiou, S. G. Hatzikiriakos: Role of processing aids in the extrusion of molten polymers, J. Vinyl Additive Technol. 8, 7–24 (2002)CrossRef E. C. Achilleos, G. Georgiou, S. G. Hatzikiriakos: Role of processing aids in the extrusion of molten polymers, J. Vinyl Additive Technol. 8, 7–24 (2002)CrossRef
31.37.
go back to reference H. Brenner, V. Ganesan: Molecular wall effects: Are conditions at a boundary `boundary conditions'?, Phys. Rev. E. 61, 6879–6897 (2000)CrossRef H. Brenner, V. Ganesan: Molecular wall effects: Are conditions at a boundary `boundary conditions'?, Phys. Rev. E. 61, 6879–6897 (2000)CrossRef
31.38.
go back to reference J. Gao, W. D. Luedtke, U. Landman: Structures, solvation forces and shear of molecular films in a rough nano-confinement, Tribology Lett. 9, 3–134 (2000)CrossRef J. Gao, W. D. Luedtke, U. Landman: Structures, solvation forces and shear of molecular films in a rough nano-confinement, Tribology Lett. 9, 3–134 (2000)CrossRef
31.39.
go back to reference C. Denniston, M. O. Robbins: Molecular and continuum boundary conditions for a miscible binary fluid, Phys. Rev. Lett. 87, 178302(1–4) (2001) C. Denniston, M. O. Robbins: Molecular and continuum boundary conditions for a miscible binary fluid, Phys. Rev. Lett. 87, 178302(1–4) (2001)
31.40.
go back to reference S. E. Campbell, G. Luengo, V. I. Srdanov, F. Wudl, J. N. Israelachvili: Very low viscosity at the solid–liquid interface induced by adsorbed C-60 monolayers, Nature 382, 520–522 (1996)CrossRef S. E. Campbell, G. Luengo, V. I. Srdanov, F. Wudl, J. N. Israelachvili: Very low viscosity at the solid–liquid interface induced by adsorbed C-60 monolayers, Nature 382, 520–522 (1996)CrossRef
31.41.
go back to reference E. Bonaccurso, M. Kappl, H.-J. Butt: Hydrodynamic force measurements: Boundary slip of water on hydrophilic surfaces and electrokinetic effects, Phys. Rev. Lett. 88, 076103(1–4) (2002)CrossRef E. Bonaccurso, M. Kappl, H.-J. Butt: Hydrodynamic force measurements: Boundary slip of water on hydrophilic surfaces and electrokinetic effects, Phys. Rev. Lett. 88, 076103(1–4) (2002)CrossRef
31.42.
go back to reference M. M. Britton, P. T. Callaghan: Two-phase shear band structures at uniform stress, Phys. Rev. Lett. 78, 4930–4933 (1997)CrossRef M. M. Britton, P. T. Callaghan: Two-phase shear band structures at uniform stress, Phys. Rev. Lett. 78, 4930–4933 (1997)CrossRef
31.43.
go back to reference O. I. Vinogradova: Drainage of a thin liquid-film confined between hydrophobic surfaces, Langmuir 11, 2213–2220 (1995)CrossRef O. I. Vinogradova: Drainage of a thin liquid-film confined between hydrophobic surfaces, Langmuir 11, 2213–2220 (1995)CrossRef
31.44.
go back to reference J. S. Peanasky, H. M. Schneider, S. Granick, C. R. Kessel: Self-assembled monolayers on mica for experiments utilizing the surface forces apparatus, Langmuir 11, 953–962 (1995)CrossRef J. S. Peanasky, H. M. Schneider, S. Granick, C. R. Kessel: Self-assembled monolayers on mica for experiments utilizing the surface forces apparatus, Langmuir 11, 953–962 (1995)CrossRef
31.45.
go back to reference H. A. Spikes: The half-wetted bearing. Part 2: Potential application to low load contacts, Proc. Inst. Mech. Eng. Part J 217, 15–26 (2003)CrossRef H. A. Spikes: The half-wetted bearing. Part 2: Potential application to low load contacts, Proc. Inst. Mech. Eng. Part J 217, 15–26 (2003)CrossRef
31.46.
go back to reference P.-G. de Gennes: On fluid/wall slippage, Langmuir 18, 3413–3414 (2002)CrossRef P.-G. de Gennes: On fluid/wall slippage, Langmuir 18, 3413–3414 (2002)CrossRef
31.47.
go back to reference J. W. G. Tyrrell, P. Attard: Atomic force microscope images of nanobubbles on a hydrophobic surface and corresponding force–separation data, Langmuir 18, 160–167 (2002)CrossRef J. W. G. Tyrrell, P. Attard: Atomic force microscope images of nanobubbles on a hydrophobic surface and corresponding force–separation data, Langmuir 18, 160–167 (2002)CrossRef
31.48.
go back to reference N. Ishida, T. Inoue, N. Miyahara, K. Higashitani: Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy, Langmuir 16, 6377–6380 (2000)CrossRef N. Ishida, T. Inoue, N. Miyahara, K. Higashitani: Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy, Langmuir 16, 6377–6380 (2000)CrossRef
31.49.
go back to reference U. C. Boehnke, T. Remmler, H. Motschmann, S. Wurlitzer, J. Hauwede, T. M. Fischer: Partial air wetting on solvophobic surfaces in polar liquids, J. Coll. Int. Sci. 211, 243–251 (1999)CrossRef U. C. Boehnke, T. Remmler, H. Motschmann, S. Wurlitzer, J. Hauwede, T. M. Fischer: Partial air wetting on solvophobic surfaces in polar liquids, J. Coll. Int. Sci. 211, 243–251 (1999)CrossRef
31.50.
go back to reference K. Lum, D. Chandler, J. D. Weeks: Hydrophobicity at small and large length scales, J. Phys. Chem. B 103, 4570–4577 (1999)CrossRef K. Lum, D. Chandler, J. D. Weeks: Hydrophobicity at small and large length scales, J. Phys. Chem. B 103, 4570–4577 (1999)CrossRef
31.51.
go back to reference X. Zhang, Y. Zhu, S. Granick: Softened hydrophobic attraction between macroscopic surfaces in relative motion, J. Am. Chem. Soc. 123, 6736–6737 (2001)CrossRef X. Zhang, Y. Zhu, S. Granick: Softened hydrophobic attraction between macroscopic surfaces in relative motion, J. Am. Chem. Soc. 123, 6736–6737 (2001)CrossRef
31.52.
go back to reference X. Zhang, Y. Zhu, S. Granick: Hydrophobicity at a Janus Interface, Science 295, 663–666 (2002)CrossRef X. Zhang, Y. Zhu, S. Granick: Hydrophobicity at a Janus Interface, Science 295, 663–666 (2002)CrossRef
31.53.
go back to reference T. Onda, S. Shibuichi, N. Satoh, K. Tsuji: Super-water-repellent fractal surfaces, Langmuir 12, 2125–2127 (1996)CrossRef T. Onda, S. Shibuichi, N. Satoh, K. Tsuji: Super-water-repellent fractal surfaces, Langmuir 12, 2125–2127 (1996)CrossRef
31.54.
go back to reference J. Bico, C. Marzolin, D. Quéré: Pearl drops, Europhys. Lett. 47, 220–226 (1999)CrossRef J. Bico, C. Marzolin, D. Quéré: Pearl drops, Europhys. Lett. 47, 220–226 (1999)CrossRef
31.55.
go back to reference S. Herminghaus: Roughness-induced non-wetting, Europhys. Lett. 52, 165–170 (2000)CrossRef S. Herminghaus: Roughness-induced non-wetting, Europhys. Lett. 52, 165–170 (2000)CrossRef
31.56.
go back to reference K. Watanabe, Y. Udagawa, H. Udagawa: Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall, J. Fluid Mech. 381, 225–238 (1999)CrossRef K. Watanabe, Y. Udagawa, H. Udagawa: Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall, J. Fluid Mech. 381, 225–238 (1999)CrossRef
31.57.
go back to reference D. W. Bechert, M. Bruse, W. Hage, R. Meyer: Fluid mechanics of biological surfaces and their technological application, Naturwiss. 87, 157–171 (2000)CrossRef D. W. Bechert, M. Bruse, W. Hage, R. Meyer: Fluid mechanics of biological surfaces and their technological application, Naturwiss. 87, 157–171 (2000)CrossRef
31.58.
go back to reference W. Kauzmann: Some forces in the interpretation of protein denaturation, Adv. Prot. Chem. 14, 1 (1959)CrossRef W. Kauzmann: Some forces in the interpretation of protein denaturation, Adv. Prot. Chem. 14, 1 (1959)CrossRef
31.59.
go back to reference C. Tanford: The Hydrophobic Effect—Formation of Micelles and Biological Membranes (Wiley-Interscience, New York 1973) C. Tanford: The Hydrophobic Effect—Formation of Micelles and Biological Membranes (Wiley-Interscience, New York 1973)
31.60.
go back to reference F. H. Stillinger: Structure in aqueous solutions of nonpolar solutes from the standpont of scaled-particle theory, J. Solution Chem. 2, 141 (1973)CrossRef F. H. Stillinger: Structure in aqueous solutions of nonpolar solutes from the standpont of scaled-particle theory, J. Solution Chem. 2, 141 (1973)CrossRef
31.61.
go back to reference E. Ruckinstein, P. Rajora: On the no-slip boundary-condition of hydrodynamics, J. Colloid Interface Sci. 96, 488–491 (1983)CrossRef E. Ruckinstein, P. Rajora: On the no-slip boundary-condition of hydrodynamics, J. Colloid Interface Sci. 96, 488–491 (1983)CrossRef
31.62.
go back to reference L. R. Pratt, D. Chandler: Theory of hydrophobic effect, J. Chem. Phys. 67, 3683–3704 (1977)CrossRef L. R. Pratt, D. Chandler: Theory of hydrophobic effect, J. Chem. Phys. 67, 3683–3704 (1977)CrossRef
31.63.
go back to reference A. Ben-Naim: Hydrophobic Interaction (Kluwer, New York 1980) A. Ben-Naim: Hydrophobic Interaction (Kluwer, New York 1980)
31.64.
go back to reference A. Wallqvist, B. J. Berne: Computer-simulation of hydrophobic hydration forces stacked plates at short-range, J. Phys. Chem. 99, 2893–2899 (1995)CrossRef A. Wallqvist, B. J. Berne: Computer-simulation of hydrophobic hydration forces stacked plates at short-range, J. Phys. Chem. 99, 2893–2899 (1995)CrossRef
31.65.
go back to reference G. Hummer, S. Garde, A. E. Garcia, A. Pohorille, L. R. Pratt: An information theory model of hydrophobic interactions, Proc. Nat. Acad. Sci. USA 93, 8951–8955 (1996)CrossRef G. Hummer, S. Garde, A. E. Garcia, A. Pohorille, L. R. Pratt: An information theory model of hydrophobic interactions, Proc. Nat. Acad. Sci. USA 93, 8951–8955 (1996)CrossRef
31.66.
go back to reference Y. K. Cheng, P. J. Rossky: The effect of vicinal polar and charged groups on hydrophobic hydration, Biopolymers 50, 742–750 (1999)CrossRef Y. K. Cheng, P. J. Rossky: The effect of vicinal polar and charged groups on hydrophobic hydration, Biopolymers 50, 742–750 (1999)CrossRef
31.67.
go back to reference D. M. Huang, D. Chandler: Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding, Proc. Nat. Acad. Sci. USA 97, 8324–8327 (2000)CrossRef D. M. Huang, D. Chandler: Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding, Proc. Nat. Acad. Sci. USA 97, 8324–8327 (2000)CrossRef
31.68.
go back to reference G. Hummer, S. Garde, A. E. Garcia, L. R. Pratt: New perspectives on hydrophobic effects, Chem. Phys. 258, 349–370 (2000)CrossRef G. Hummer, S. Garde, A. E. Garcia, L. R. Pratt: New perspectives on hydrophobic effects, Chem. Phys. 258, 349–370 (2000)CrossRef
31.69.
go back to reference D. Bratko, R. A. Curtis, H. W. Blanch, J. M. Prausnitz: Interaction between hydrophobic surfaces with metastable intervening liquid, J. Chem. Phys. 115, 3873–3877 (2001)CrossRef D. Bratko, R. A. Curtis, H. W. Blanch, J. M. Prausnitz: Interaction between hydrophobic surfaces with metastable intervening liquid, J. Chem. Phys. 115, 3873–3877 (2001)CrossRef
31.70.
go back to reference Y.-H. Tsao, D. F. Evans, H. Wennerstöm: Long-range attractive force between hydrophobic surfaces observed by atomic force microscopy, Science 262, 547–550 (1993) and references thereinCrossRef Y.-H. Tsao, D. F. Evans, H. Wennerstöm: Long-range attractive force between hydrophobic surfaces observed by atomic force microscopy, Science 262, 547–550 (1993) and references thereinCrossRef
31.71.
go back to reference R. F. Considine, C. J. Drummond: Long-range force of attraction between solvophobic surfaces in water and organic liquids containing dissolved air, Langmuir 16, 631–635 (2000)CrossRef R. F. Considine, C. J. Drummond: Long-range force of attraction between solvophobic surfaces in water and organic liquids containing dissolved air, Langmuir 16, 631–635 (2000)CrossRef
31.72.
go back to reference J. W. G. Tyrrell, P. Attard: Images of nanobubbles on hydrophobic surfaces and their interactions, Phys. Rev. Lett. 87, 176104 (2001)CrossRef J. W. G. Tyrrell, P. Attard: Images of nanobubbles on hydrophobic surfaces and their interactions, Phys. Rev. Lett. 87, 176104 (2001)CrossRef
31.73.
go back to reference J. Peachey, J. Van Alsten, S. Granick: Design of an apparatus to measure the shear response of ultrathin liquid-films, Rev. Sci. Instrum. 62, 463–473 (1991)CrossRef J. Peachey, J. Van Alsten, S. Granick: Design of an apparatus to measure the shear response of ultrathin liquid-films, Rev. Sci. Instrum. 62, 463–473 (1991)CrossRef
31.74.
go back to reference C. Y. Lee, J. A. McCammon, P. J. Rossky: The structure of liquid water at an extended hydrophobic surface, J. Chem. Phys. 80, 4448–4455 (1984)CrossRef C. Y. Lee, J. A. McCammon, P. J. Rossky: The structure of liquid water at an extended hydrophobic surface, J. Chem. Phys. 80, 4448–4455 (1984)CrossRef
31.75.
go back to reference J. N. Israelachvili, R. M. Pashley: The hydrophobic interaction is long-range, decaying exponentially with distance, Nature 300, 341–342 (1982)CrossRef J. N. Israelachvili, R. M. Pashley: The hydrophobic interaction is long-range, decaying exponentially with distance, Nature 300, 341–342 (1982)CrossRef
31.76.
go back to reference J. N. Israelachvili, R. M. Pashley: Measure of the hydrophobic interaction between 2 hydrophobic surfaces in aqueous-electrolyte solutions, J. Colloid Interface Sci. 98, 500–514 (1984) J. N. Israelachvili, R. M. Pashley: Measure of the hydrophobic interaction between 2 hydrophobic surfaces in aqueous-electrolyte solutions, J. Colloid Interface Sci. 98, 500–514 (1984)
31.77.
go back to reference R. M. Pashley, P. M. McGuiggan, B. W. Ninham, D. F. Evans: Attractive forces between uncharged hydrophobic surfaces-direct measurement in aqueous-solution, Science 229, 1088–1089 (1985)CrossRef R. M. Pashley, P. M. McGuiggan, B. W. Ninham, D. F. Evans: Attractive forces between uncharged hydrophobic surfaces-direct measurement in aqueous-solution, Science 229, 1088–1089 (1985)CrossRef
31.78.
go back to reference P. M. Claesson, C. E. Blom, P. C. Herder, B. W. Ninham: Interactions between water-stable hydrophobic Langmuir–Blodgett monolayers on mica, J. Colloid Interface Sci. 114, 234–242 (1986)CrossRef P. M. Claesson, C. E. Blom, P. C. Herder, B. W. Ninham: Interactions between water-stable hydrophobic Langmuir–Blodgett monolayers on mica, J. Colloid Interface Sci. 114, 234–242 (1986)CrossRef
31.79.
go back to reference P. M. Claesson, H. K. Christenson: Very long-range attractive forces between uncharged hydrocarbon and fluorocarbon surfaces in water, J. Phys. Chem. 92, 1650–1655 (1988)CrossRef P. M. Claesson, H. K. Christenson: Very long-range attractive forces between uncharged hydrocarbon and fluorocarbon surfaces in water, J. Phys. Chem. 92, 1650–1655 (1988)CrossRef
31.80.
go back to reference H. K. Christenson, P. M. Claesson, J. Berg, P. C. Herder: Forces between fluorocarbon surfactant monolayers—salt effects on the hydrophobic interact, J. Phys. Chem. 93, 1472–1478 (1989)CrossRef H. K. Christenson, P. M. Claesson, J. Berg, P. C. Herder: Forces between fluorocarbon surfactant monolayers—salt effects on the hydrophobic interact, J. Phys. Chem. 93, 1472–1478 (1989)CrossRef
31.81.
go back to reference O. Spalla: Long-range attraction between surfaces: Existence and amplitude?, Curr. Opin. Colloid Interface Sci. 5, 5–12 (2000) and references thereinCrossRef O. Spalla: Long-range attraction between surfaces: Existence and amplitude?, Curr. Opin. Colloid Interface Sci. 5, 5–12 (2000) and references thereinCrossRef
31.82.
go back to reference J. Wood, R. Sharma: How long is the long-range hydrophobic attraction?, Langmuir 11, 4797–4802 (1995)CrossRef J. Wood, R. Sharma: How long is the long-range hydrophobic attraction?, Langmuir 11, 4797–4802 (1995)CrossRef
31.83.
go back to reference J. L. Parker, P. M. Claesson, P. Attard: Bubbles, cavities, and the long-range attraction between hydrophobic surfaces, J. Phys. Chem. 98, 8468–8480 (1994)CrossRef J. L. Parker, P. M. Claesson, P. Attard: Bubbles, cavities, and the long-range attraction between hydrophobic surfaces, J. Phys. Chem. 98, 8468–8480 (1994)CrossRef
31.84.
go back to reference A. Carambassis, L. C. Jonker, P. Attard, M. W. Rutland: Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble, Phys. Rev. Lett. 80, 5357–5360 (1998)CrossRef A. Carambassis, L. C. Jonker, P. Attard, M. W. Rutland: Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble, Phys. Rev. Lett. 80, 5357–5360 (1998)CrossRef
31.85.
go back to reference V. S. J. Craig, B. W. Ninham, R. M. Pashley: Direct measurement of hydrophobic forces: A study of dissolved gas, approach rate, and neutron irradiation, Langmuir 15, 1562–1569 (1999)CrossRef V. S. J. Craig, B. W. Ninham, R. M. Pashley: Direct measurement of hydrophobic forces: A study of dissolved gas, approach rate, and neutron irradiation, Langmuir 15, 1562–1569 (1999)CrossRef
31.86.
go back to reference R. F. Considine, R. A. Hayes, R. G. Horn: Forces measured between latex spheres in aqueous electrolyte: Non-DLVO behavior and sensitivity to dissolved gas, Langmuir 15, 1657–1659 (1999)CrossRef R. F. Considine, R. A. Hayes, R. G. Horn: Forces measured between latex spheres in aqueous electrolyte: Non-DLVO behavior and sensitivity to dissolved gas, Langmuir 15, 1657–1659 (1999)CrossRef
31.87.
go back to reference J. D. Ferry: Viscoelastic Properties of Polymers, 3rd edn. (Wiley, New York 1982) J. D. Ferry: Viscoelastic Properties of Polymers, 3rd edn. (Wiley, New York 1982)
31.88.
go back to reference Y. Zhu, S. Granick: Viscosity of interfacial water, Phys. Rev. Lett. 87, 096104 (2001)CrossRef Y. Zhu, S. Granick: Viscosity of interfacial water, Phys. Rev. Lett. 87, 096104 (2001)CrossRef
31.89.
go back to reference H. H. Winter, F. Chambon: Analysis of linear viscoelasticity of a cross-linking polymer at the gel point, J. Rheol. 30, 367–382 (1986)CrossRef H. H. Winter, F. Chambon: Analysis of linear viscoelasticity of a cross-linking polymer at the gel point, J. Rheol. 30, 367–382 (1986)CrossRef
31.90.
go back to reference R. Yamamoto, A. Onuki: Dynamics of highly supercooled liquids: Heterogeneity, rheology, and diffusion, Phys. Rev. E 58, 3515–3529 (1998) and references thereinCrossRef R. Yamamoto, A. Onuki: Dynamics of highly supercooled liquids: Heterogeneity, rheology, and diffusion, Phys. Rev. E 58, 3515–3529 (1998) and references thereinCrossRef
31.91.
go back to reference A. O. Parry, R. Evans: Influence of wetting on phase-equilibra—a novel mechanism for critical-point shifts in films, Phys. Rev. Lett. 64, 439–442 (1990)CrossRef A. O. Parry, R. Evans: Influence of wetting on phase-equilibra—a novel mechanism for critical-point shifts in films, Phys. Rev. Lett. 64, 439–442 (1990)CrossRef
31.92.
go back to reference K. Binder, D. P. Landau, A. M. Ferrenberg: Thin ising films with completing walls—a Monte Carlo study, Phys. Rev. E 51, 2823–2838 (1995)CrossRef K. Binder, D. P. Landau, A. M. Ferrenberg: Thin ising films with completing walls—a Monte Carlo study, Phys. Rev. E 51, 2823–2838 (1995)CrossRef
31.93.
go back to reference D. K. Schwartz, M. L. Schlossman, E. H. Kawamoto, G. J. Kellog, P. S. Perhan, B. M. Ocko: Thermal diffuse X-ray-scattering studies of the water–vapor interface, Phys. Rev. A 41, 5687–5690 (2000)CrossRef D. K. Schwartz, M. L. Schlossman, E. H. Kawamoto, G. J. Kellog, P. S. Perhan, B. M. Ocko: Thermal diffuse X-ray-scattering studies of the water–vapor interface, Phys. Rev. A 41, 5687–5690 (2000)CrossRef
31.94.
go back to reference S. Granick: Motions and relaxations of confined liquids, Science 253, 1374–1379 (1991)CrossRef S. Granick: Motions and relaxations of confined liquids, Science 253, 1374–1379 (1991)CrossRef
31.95.
go back to reference J. Klein, E. Kumacheva: Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions, J. Chem. Phys. 108, 6996–7009 (1998)CrossRef J. Klein, E. Kumacheva: Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions, J. Chem. Phys. 108, 6996–7009 (1998)CrossRef
31.96.
go back to reference E. Kumacheva, J. Klein: Simple liquids confined to molecularly thin layers. II. Shear and frictional behavior of solidified films, J. Chem. Phys. 108, 7010–7022 (1998)CrossRef E. Kumacheva, J. Klein: Simple liquids confined to molecularly thin layers. II. Shear and frictional behavior of solidified films, J. Chem. Phys. 108, 7010–7022 (1998)CrossRef
31.97.
go back to reference C. Drummond, J. Israelachvili: Dynamic phase transitions in confined lubricant fluids under shear, Phys. Rev. E 63, 041506–1–11 (2001)CrossRef C. Drummond, J. Israelachvili: Dynamic phase transitions in confined lubricant fluids under shear, Phys. Rev. E 63, 041506–1–11 (2001)CrossRef
31.98.
go back to reference Y. Golan, M. Seitz, C. Luo, A. Martin-Herranz, M. Yasa, Y. L. Li, C. R. Safinya, J. Israelachvili: The X-ray surface forces apparatus for simultaneous X-ray diffraction and direct normal and lateral force measurements, Rev. Sci. Instrum. 73, 2486–248 (2002)CrossRef Y. Golan, M. Seitz, C. Luo, A. Martin-Herranz, M. Yasa, Y. L. Li, C. R. Safinya, J. Israelachvili: The X-ray surface forces apparatus for simultaneous X-ray diffraction and direct normal and lateral force measurements, Rev. Sci. Instrum. 73, 2486–248 (2002)CrossRef
31.99.
go back to reference Y. Golan, A. Martin-Herranz, Y. Li, C. R. Safinya, J. Israelachvili: Direct observation of shear-induced orientational phase coexistence in a lyotropic system using a modified X-ray surface forces apparatus, Phys. Rev. Lett. 86, 1263–1266 (2001)CrossRef Y. Golan, A. Martin-Herranz, Y. Li, C. R. Safinya, J. Israelachvili: Direct observation of shear-induced orientational phase coexistence in a lyotropic system using a modified X-ray surface forces apparatus, Phys. Rev. Lett. 86, 1263–1266 (2001)CrossRef
31.100.
go back to reference S. M. Baker, G. Smith, R. Pynn, P. Butler, J. Hayter, W. Hamilton, L. Magid: Shear cell for the study of liquid–solid interfaces by neutron scattering, Rev. Sci. Instrum. 65, 412–416 (1994)CrossRef S. M. Baker, G. Smith, R. Pynn, P. Butler, J. Hayter, W. Hamilton, L. Magid: Shear cell for the study of liquid–solid interfaces by neutron scattering, Rev. Sci. Instrum. 65, 412–416 (1994)CrossRef
31.101.
go back to reference T. L. Kuhl, G. S. Smith, J. N. Israelachvili, J. Majewski, W. Hamilton: Neutron confinement cell for investigating complex fluids, Rev. Sci. Instrum. 72, 1715–1720 (2001)CrossRef T. L. Kuhl, G. S. Smith, J. N. Israelachvili, J. Majewski, W. Hamilton: Neutron confinement cell for investigating complex fluids, Rev. Sci. Instrum. 72, 1715–1720 (2001)CrossRef
31.102.
go back to reference O. H. Seeck, H. Kim, D. R. Lee, D. Shu, I. D. Kaendler, J. K. Basu, S. K. Sinha: Observation of thickness quantization in liquid films confined to molecular dimension, Europhys. Lett. 60, 376–382 (2002)CrossRef O. H. Seeck, H. Kim, D. R. Lee, D. Shu, I. D. Kaendler, J. K. Basu, S. K. Sinha: Observation of thickness quantization in liquid films confined to molecular dimension, Europhys. Lett. 60, 376–382 (2002)CrossRef
31.103.
go back to reference A. Dhinojwala, S. Granick: Micron-gap rheo-optics with parallel plates, J. Chem. Phys. 107, 8664–8667 (1998)CrossRef A. Dhinojwala, S. Granick: Micron-gap rheo-optics with parallel plates, J. Chem. Phys. 107, 8664–8667 (1998)CrossRef
31.104.
go back to reference I. Soga, A. Dhinojwala, S. Granick: Optorheological studies of sheared confined fluids with mesoscopic thickness, Langmuir 4, 1156–1161 (1998)CrossRef I. Soga, A. Dhinojwala, S. Granick: Optorheological studies of sheared confined fluids with mesoscopic thickness, Langmuir 4, 1156–1161 (1998)CrossRef
31.105.
go back to reference S. Mamedov, A. D. Schwab, A. Dhinojwala: A device for surface study of confined micron thin films in a total internal reflection geometry, Rev. Sci. Instrum. 73, 2321–2324 (2002)CrossRef S. Mamedov, A. D. Schwab, A. Dhinojwala: A device for surface study of confined micron thin films in a total internal reflection geometry, Rev. Sci. Instrum. 73, 2321–2324 (2002)CrossRef
31.106.
go back to reference P. Frantz, F. Wolf, X. D. Xiao, Y. Chen, S. Bosch, M. Salmeron: Design of surface forces apparatus for tribolgy studies combined with nonlinear optical spectroscopy, Rev. Sci. Instrum. 68, 2499–2504 (1997)CrossRef P. Frantz, F. Wolf, X. D. Xiao, Y. Chen, S. Bosch, M. Salmeron: Design of surface forces apparatus for tribolgy studies combined with nonlinear optical spectroscopy, Rev. Sci. Instrum. 68, 2499–2504 (1997)CrossRef
31.107.
go back to reference X. S. Xie, J. K. Trautman: Optical studies of single molecules at room temperature, Annu. Rev. Phys. Chem. 49, 441–480 (1998)CrossRef X. S. Xie, J. K. Trautman: Optical studies of single molecules at room temperature, Annu. Rev. Phys. Chem. 49, 441–480 (1998)CrossRef
31.108.
go back to reference W. E. Moerner, M. Orritt: Illuminating single molecules, Science 283, 670–1676 (1999)CrossRef W. E. Moerner, M. Orritt: Illuminating single molecules, Science 283, 670–1676 (1999)CrossRef
31.109.
go back to reference L. A. Deschenes, D. A. Vanden Bout: Single molecule studies of heterogeneous dynamics in polymer melts near the glass transition, Science 292, 255–258 (2001)CrossRef L. A. Deschenes, D. A. Vanden Bout: Single molecule studies of heterogeneous dynamics in polymer melts near the glass transition, Science 292, 255–258 (2001)CrossRef
31.110.
go back to reference A. Mukhopadhyay, S. Granick: An integrated platform for surface force measurements and fluorescence correlation spectroscopy, Rev. Sci. Instrum. 74, 3067–3072 (2003)CrossRef A. Mukhopadhyay, S. Granick: An integrated platform for surface force measurements and fluorescence correlation spectroscopy, Rev. Sci. Instrum. 74, 3067–3072 (2003)CrossRef
31.111.
go back to reference A. Mukhopadhyay, J. Zhao, S. C. Bae, S. Granick: Contrasting friction and diffusion in molecularly-thin films, Phys. Rev. Lett. 89, 136103 (2002)CrossRef A. Mukhopadhyay, J. Zhao, S. C. Bae, S. Granick: Contrasting friction and diffusion in molecularly-thin films, Phys. Rev. Lett. 89, 136103 (2002)CrossRef
31.112.
go back to reference K. M. Berland, P. T. C. So, E. Gratton: 2-Photon fluorescence correlation spectroscopy—method and application to the intracellular environment, Biophys. J. 68, 694–701 (1995)CrossRef K. M. Berland, P. T. C. So, E. Gratton: 2-Photon fluorescence correlation spectroscopy—method and application to the intracellular environment, Biophys. J. 68, 694–701 (1995)CrossRef
31.113.
go back to reference U. Kettling, A. Koltermann, P. Schwille, M. Eigen: Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy, Proc. Natl. Acad. Sci. USA 95, 1416–1420 (1998)CrossRef U. Kettling, A. Koltermann, P. Schwille, M. Eigen: Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy, Proc. Natl. Acad. Sci. USA 95, 1416–1420 (1998)CrossRef
31.114.
go back to reference A. M. Lieto, R. C. Cush, N. L. Thompson: Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy, Biophys. J. 85, 3294–3302 (2003)CrossRef A. M. Lieto, R. C. Cush, N. L. Thompson: Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy, Biophys. J. 85, 3294–3302 (2003)CrossRef
31.115.
go back to reference P. Schwille, U. Haupts, S. Maiti, W. W. Webb: Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation, Biophys. J 77, 2251–2265 (1999)CrossRef P. Schwille, U. Haupts, S. Maiti, W. W. Webb: Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation, Biophys. J 77, 2251–2265 (1999)CrossRef
31.116.
go back to reference W. W. Webb: Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus, Appl. Opt. 40, 3969–3983 (2001)CrossRef W. W. Webb: Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus, Appl. Opt. 40, 3969–3983 (2001)CrossRef
31.117.
go back to reference P. S. Dittrich, P. Schwill: Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation, Appl. Phys. B 73, 829–837 (2001)CrossRef P. S. Dittrich, P. Schwill: Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation, Appl. Phys. B 73, 829–837 (2001)CrossRef
31.118.
go back to reference M. Born, E. Wolf: Principles of Optics (Cambridge Univ. Press, Cambridge 1999) p. 7 M. Born, E. Wolf: Principles of Optics (Cambridge Univ. Press, Cambridge 1999) p. 7
31.119.
go back to reference I. Sridhar, K. L. Johnson, N. A. Fleck: Adhesion mechanics of the surface force apparatus, J. Appl. Phys. D 30, 1710–1719 (1997)CrossRef I. Sridhar, K. L. Johnson, N. A. Fleck: Adhesion mechanics of the surface force apparatus, J. Appl. Phys. D 30, 1710–1719 (1997)CrossRef
31.120.
go back to reference Y. Zhu, S. Granick: Reassessment of solidification in fluids confined between mica sheets, Langmuir 19, 8148–8151 (2003)CrossRef Y. Zhu, S. Granick: Reassessment of solidification in fluids confined between mica sheets, Langmuir 19, 8148–8151 (2003)CrossRef
31.121.
go back to reference H.-W. Hu, G. Carson, S. Granick: Relaxation-time of confined liquids under shear, Phys. Rev. Lett. 66, 2758–2761 (1991)CrossRef H.-W. Hu, G. Carson, S. Granick: Relaxation-time of confined liquids under shear, Phys. Rev. Lett. 66, 2758–2761 (1991)CrossRef
31.122.
go back to reference K. N. Pham, A. M. Puertas, J. Bergenholtz, S. U. Egelhaaf, A. Moussaid, P. N. Pusey, B. Schofield, M. E. Cates, M. Fuchs, W. C. K. Poon: Multiple glassy states in a simple model system, Science 296, 104–106 (2002)CrossRef K. N. Pham, A. M. Puertas, J. Bergenholtz, S. U. Egelhaaf, A. Moussaid, P. N. Pusey, B. Schofield, M. E. Cates, M. Fuchs, W. C. K. Poon: Multiple glassy states in a simple model system, Science 296, 104–106 (2002)CrossRef
31.123.
go back to reference A. Mukhopadhyay, S. C. Bae, J. Zhao, S. Granick: How confined lubricants diffuse during shear, Phys. Rev. Lett. 93, 236105 (2004)CrossRef A. Mukhopadhyay, S. C. Bae, J. Zhao, S. Granick: How confined lubricants diffuse during shear, Phys. Rev. Lett. 93, 236105 (2004)CrossRef
31.124.
go back to reference Z. Q. Lin, S. Granick: Platinum nanoparticles at mica surfaces, Langmuir 19, 7061–7070 (2003)CrossRef Z. Q. Lin, S. Granick: Platinum nanoparticles at mica surfaces, Langmuir 19, 7061–7070 (2003)CrossRef
31.125.
go back to reference Y. Zhu, S. Granick: Superlubricity: A paradox about confined fluids resolved, Phys. Rev. Lett. 93, 096101 (2004)CrossRef Y. Zhu, S. Granick: Superlubricity: A paradox about confined fluids resolved, Phys. Rev. Lett. 93, 096101 (2004)CrossRef
31.126.
go back to reference M. Urbakh, J. Klafteer, D. Gourdon, J. Israelachvili: The nonlinear nature of friction, Nature 430, 525–528 (2004)CrossRef M. Urbakh, J. Klafteer, D. Gourdon, J. Israelachvili: The nonlinear nature of friction, Nature 430, 525–528 (2004)CrossRef
Metadata
Title
Interfacial Forces and Spectroscopic Study of Confined Fluids
Authors
Y. Zhu, Prof.
Ashis Mukhopadhyay, Prof.
Steve Granick, Prof.
Copyright Year
2007
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-540-29857-1_31

Premium Partners