Skip to main content
Top

2013 | OriginalPaper | Chapter

6. Interfacing at the Stochastic Separatrix

Author : Zeev Schuss

Published in: Brownian Dynamics at Boundaries and Interfaces

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter introduces the concept of the stochastic separatrix and elaborates its application in clarifying the notion of transitions between relatively long-lived states and short-lived transition states. These may be noise-induced transitions over high barriers or the squeezing of Brownian motion through narrow necks connecting relatively large confining compartments. The stochastic separatrix plays a role in determining the dependence of the first nonzero eigenvalue of the Fokker–Planck operator (FPO) on the geometry of the drift field and on the geometry of the domain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bartsch, T., T. Uzer, R. Hernandez (2005), “Stochastic transition states: Reaction geometry amidst noise,” J. Chem. Phys., 123, 204102.CrossRef Bartsch, T., T. Uzer, R. Hernandez (2005), “Stochastic transition states: Reaction geometry amidst noise,” J. Chem. Phys., 123, 204102.CrossRef
go back to reference Bartsch, T., T. Uzer, J.M. Moix, R. Hernandez (2008), “Transition state theory rate calculations with a recrossing-free moving dividing surface,” J. Phys. Chem. B, 112, 206–212.CrossRef Bartsch, T., T. Uzer, J.M. Moix, R. Hernandez (2008), “Transition state theory rate calculations with a recrossing-free moving dividing surface,” J. Phys. Chem. B, 112, 206–212.CrossRef
go back to reference Ben-Jacob, E., D.J. Bergman, Y. Imry, B.J. Matkowsky, Z. Schuss (1983), “Thermal activation from the fluxoid and the voltage states of a DC-SQUID,” J. Appl. Phys., 54, 6533–6542.CrossRef Ben-Jacob, E., D.J. Bergman, Y. Imry, B.J. Matkowsky, Z. Schuss (1983), “Thermal activation from the fluxoid and the voltage states of a DC-SQUID,” J. Appl. Phys., 54, 6533–6542.CrossRef
go back to reference Ben-Jacob, E., D.J. Bergman, B.J. Matkowsky, Z. Schuss (1982), “The lifetime of oscillatory steady states,” Phys. Rev. A, 26, 2805–2816. Ben-Jacob, E., D.J. Bergman, B.J. Matkowsky, Z. Schuss (1982), “The lifetime of oscillatory steady states,” Phys. Rev. A, 26, 2805–2816.
go back to reference Benson, S.H. (1960), The Foundations of Chemical Kinetics, McGraw-Hill, N.Y.. Benson, S.H. (1960), The Foundations of Chemical Kinetics, McGraw-Hill, N.Y..
go back to reference Berezhkovskii, A.M. and V.Y. Zitserman (1990a), “Solvent slow-mode influence on chemical reaction dynamics: a multidimensional Kramers-theory treatment,” Chem. Phys. Lett., 172, 235–242.CrossRef Berezhkovskii, A.M. and V.Y. Zitserman (1990a), “Solvent slow-mode influence on chemical reaction dynamics: a multidimensional Kramers-theory treatment,” Chem. Phys. Lett., 172, 235–242.CrossRef
go back to reference Berezhkovskii, A.M. and V.Y. Zitserman (1990b), “Activated rate processes in a multidimensional case. A new solution of the Kramers problem,” Physica, 166A, 585–621. Berezhkovskii, A.M. and V.Y. Zitserman (1990b), “Activated rate processes in a multidimensional case. A new solution of the Kramers problem,” Physica, 166A, 585–621.
go back to reference Bobrovsky, B.Z. and Z. Schuss (1982), “A singular perturbation method for the computation of the mean first passage time in a nonlinear filter,” SIAM J. Appl. Math., 42, 174–187.MathSciNetMATHCrossRef Bobrovsky, B.Z. and Z. Schuss (1982), “A singular perturbation method for the computation of the mean first passage time in a nonlinear filter,” SIAM J. Appl. Math., 42, 174–187.MathSciNetMATHCrossRef
go back to reference Brinkman, H.C. (1956), “Brownian motion in a field of force and the diffusion theory of chemical reactions. II,” Physica (Utrecht), 22, 149–155. Brinkman, H.C. (1956), “Brownian motion in a field of force and the diffusion theory of chemical reactions. II,” Physica (Utrecht), 22, 149–155.
go back to reference Büttiker, M., E.P. Harris, and R. Landauer (1983), “Thermal activation in extremely underdamped Josephson junction circuits,” Phys. Rev., B28, 1268–1275. Büttiker, M., E.P. Harris, and R. Landauer (1983), “Thermal activation in extremely underdamped Josephson junction circuits,” Phys. Rev., B28, 1268–1275.
go back to reference Cartling, B. (1987), “Kinetics of activated processes from nonstationary solutions of the Fokker-Planck equation for a bistable potential,” J. Chem. Phys., 87, 2638–2648.CrossRef Cartling, B. (1987), “Kinetics of activated processes from nonstationary solutions of the Fokker-Planck equation for a bistable potential,” J. Chem. Phys., 87, 2638–2648.CrossRef
go back to reference Chandrasekhar, S. (1943), “Stochastic Problems In Physics and Astronomy,” Rev. Mod. Phys., 15, 2–89.CrossRef Chandrasekhar, S. (1943), “Stochastic Problems In Physics and Astronomy,” Rev. Mod. Phys., 15, 2–89.CrossRef
go back to reference Christiansen, J.A. (1936), “Über eine Erweiterung der Arrheniusschen Auffassung der chemischen Reaction,” Z. Phys. Chem. B, 33, 145–155. Christiansen, J.A. (1936), “Über eine Erweiterung der Arrheniusschen Auffassung der chemischen Reaction,” Z. Phys. Chem. B, 33, 145–155.
go back to reference Day, M.V. (1989), “Boundary local time and small parameter exit problems with characteristic boundaries,” SIAM J. Math. Anal., 20, 222–248.MathSciNetMATHCrossRef Day, M.V. (1989), “Boundary local time and small parameter exit problems with characteristic boundaries,” SIAM J. Math. Anal., 20, 222–248.MathSciNetMATHCrossRef
go back to reference Day, M.V. (1990), “Large deviation results for the exit problem with characteristic boundary,” J. Math. Anal. Appl., 147, 134–153 (1990), in Diffusion processes and related problems in analysis, M. Pinsky, editor, 55–72, Birkhäuser, Basel.CrossRef Day, M.V. (1990), “Large deviation results for the exit problem with characteristic boundary,” J. Math. Anal. Appl., 147, 134–153 (1990), in Diffusion processes and related problems in analysis, M. Pinsky, editor, 55–72, Birkhäuser, Basel.CrossRef
go back to reference Day, M.V. (1992), “Conditional exits for small noise diffusions,” Ann. Prob., 20 (3), 1385–1419.MATHCrossRef Day, M.V. (1992), “Conditional exits for small noise diffusions,” Ann. Prob., 20 (3), 1385–1419.MATHCrossRef
go back to reference Doering, C.R., P.S. Hagan, C.D. Levermore (1987), “Bistability driven by weakly colored Gaussian noise: The Fokker-Planck boundary layer and mean first-passage times,” Phys. Rev. Lett., 59, 2129–2132.CrossRef Doering, C.R., P.S. Hagan, C.D. Levermore (1987), “Bistability driven by weakly colored Gaussian noise: The Fokker-Planck boundary layer and mean first-passage times,” Phys. Rev. Lett., 59, 2129–2132.CrossRef
go back to reference Dygas (Kłosek), M.M., B.J. Matkowsky, and Z. Schuss (1986), “Singular perturbation approach to non-Markovian escape rate problems,” SIAM J. Appl. Math., 46 (2), 265–298. Dygas (Kłosek), M.M., B.J. Matkowsky, and Z. Schuss (1986), “Singular perturbation approach to non-Markovian escape rate problems,” SIAM J. Appl. Math., 46 (2), 265–298.
go back to reference Evans, M.G. (1938), “Thermodynamical treatment of transition state,” Trans. Faraday Soc., 34, 49–57.CrossRef Evans, M.G. (1938), “Thermodynamical treatment of transition state,” Trans. Faraday Soc., 34, 49–57.CrossRef
go back to reference Eyring, H. (1935) “The activated complex in chemical reactions,” J. Chem. Phys., 3 (2), p. 107. Eyring, H. (1935) “The activated complex in chemical reactions,” J. Chem. Phys., 3 (2), p. 107.
go back to reference Feller, W. (1968), An Introduction to Probability Theory and Its Applications, Volumes 1, 2. John Wiley & Sons, Paperback, NY, 3rd edition. Feller, W. (1968), An Introduction to Probability Theory and Its Applications, Volumes 1, 2. John Wiley & Sons, Paperback, NY, 3rd edition.
go back to reference Fleming, G.R. and P.G. Wolynes (1990), “Chemical dynamics in solution,” Physics Today (Special Issue), 43, 36–43. Fleming, G.R. and P.G. Wolynes (1990), “Chemical dynamics in solution,” Physics Today (Special Issue), 43, 36–43.
go back to reference Ford, G.W., M. Kac, and P. Mazur (1965), “Statistical mechanics of assemblies of coupled oscillators,” J. Math. Phys., 6, 504–515.MathSciNetMATHCrossRef Ford, G.W., M. Kac, and P. Mazur (1965), “Statistical mechanics of assemblies of coupled oscillators,” J. Math. Phys., 6, 504–515.MathSciNetMATHCrossRef
go back to reference Frauenfelder, H. and P.G. Wolynes (1985), “Rate theories and puzzles of hemeprotein kinetics,” Science, 229 (4711), 337–345.CrossRef Frauenfelder, H. and P.G. Wolynes (1985), “Rate theories and puzzles of hemeprotein kinetics,” Science, 229 (4711), 337–345.CrossRef
go back to reference Freidlin, M.A. and A.D. Wentzell (1984), Random Perturbations of Dynamical Systems, Springer-Verlag, New York.MATHCrossRef Freidlin, M.A. and A.D. Wentzell (1984), Random Perturbations of Dynamical Systems, Springer-Verlag, New York.MATHCrossRef
go back to reference Gardiner, C.W. (1985), Handbook of Stochastic Methods, Springer-Verlag, NY, 2nd edition. Gardiner, C.W. (1985), Handbook of Stochastic Methods, Springer-Verlag, NY, 2nd edition.
go back to reference Glasstone, S., K.J. Laidler, H. Eyring (1941), The Theory of Rate Processes, McGraw-Hill, N.Y. Glasstone, S., K.J. Laidler, H. Eyring (1941), The Theory of Rate Processes, McGraw-Hill, N.Y.
go back to reference Graham, R. and T. Tel (1984), “Existence of a potential for dissipative dynamical systems,” Phys. Rev. Lett., 52, 9–12.MathSciNetCrossRef Graham, R. and T. Tel (1984), “Existence of a potential for dissipative dynamical systems,” Phys. Rev. Lett., 52, 9–12.MathSciNetCrossRef
go back to reference Graham, R. and T. Tel (1986), “Nonequilibrium potential for coexisting attractors,” Phys. Rev. A, 33, 1322–1337.MathSciNetCrossRef Graham, R. and T. Tel (1986), “Nonequilibrium potential for coexisting attractors,” Phys. Rev. A, 33, 1322–1337.MathSciNetCrossRef
go back to reference Hagan, P.S., C.R. Doering, and C.D. Levermore (1989), “Mean exit times for particles driven by weakly colored noise,” SIAM J. Appl. Math., 49, 1480–1513.MathSciNetMATHCrossRef Hagan, P.S., C.R. Doering, and C.D. Levermore (1989), “Mean exit times for particles driven by weakly colored noise,” SIAM J. Appl. Math., 49, 1480–1513.MathSciNetMATHCrossRef
go back to reference Haken, H. (1975), “Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems,” Rev. Mod. Phys., 47, 67–121.MathSciNetCrossRef Haken, H. (1975), “Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems,” Rev. Mod. Phys., 47, 67–121.MathSciNetCrossRef
go back to reference Hänggi, P. (1986a), “Escape from a metastable state,” J. Stat. Phys., 42 (1/2), 105–148.CrossRef Hänggi, P. (1986a), “Escape from a metastable state,” J. Stat. Phys., 42 (1/2), 105–148.CrossRef
go back to reference Hänggi, P. (1986b), “Addendum and Erratum: Escape from a Metastable State [J. Stat. Phys. 42:105–148 (1986)],” J. Stat. Phys., 44 (5/6), 1003–1004. Hänggi, P. (1986b), “Addendum and Erratum: Escape from a Metastable State [J. Stat. Phys. 42:105–148 (1986)],” J. Stat. Phys., 44 (5/6), 1003–1004.
go back to reference Itô, K. and H.P. McKean, Jr (1996), Diffusion Processes and Their Sample Paths (Classics in Mathematics). Springer-Verlag. Itô, K. and H.P. McKean, Jr (1996), Diffusion Processes and Their Sample Paths (Classics in Mathematics). Springer-Verlag.
go back to reference Karlin, S. and H.M. Taylor (1981), A Second Course in Stochastic Processes, Academic Press, NY, 2nd edition. Karlin, S. and H.M. Taylor (1981), A Second Course in Stochastic Processes, Academic Press, NY, 2nd edition.
go back to reference Katz, A. and Z. Schuss (1985), “Reliability of elastic structures driven by random loads,” SIAM J. Appl. Math., 45 (3), 383–402.MathSciNetMATHCrossRef Katz, A. and Z. Schuss (1985), “Reliability of elastic structures driven by random loads,” SIAM J. Appl. Math., 45 (3), 383–402.MathSciNetMATHCrossRef
go back to reference Keck, J.C. (1967), “Variational theory of reaction rates,” Adv. Chem. Phys., 13, 85–121.CrossRef Keck, J.C. (1967), “Variational theory of reaction rates,” Adv. Chem. Phys., 13, 85–121.CrossRef
go back to reference Kłosek-Dygas, M.M., B.M. Hoffman, B.J. Matkowsky, A. Nitzan, M. Ratner, Z. Schuss (1989), “Diffusion theory of multidimensional activated rate processes: The role of anisotropy,” J. Chem. Phys., 90 (2), 1141–1148.CrossRef Kłosek-Dygas, M.M., B.M. Hoffman, B.J. Matkowsky, A. Nitzan, M. Ratner, Z. Schuss (1989), “Diffusion theory of multidimensional activated rate processes: The role of anisotropy,” J. Chem. Phys., 90 (2), 1141–1148.CrossRef
go back to reference Kłosek-Dygas, M.M., B.M. Hoffman, B.J. Matkowsky, A. Nitzan, M. Ratner, Z. Schuss (1991), “Reply to Comment on: Diffusion theory of multidimensional activated rate processes: the role of anisotropy,” J. Chem. Phys., 95(2), 1425–1426.CrossRef Kłosek-Dygas, M.M., B.M. Hoffman, B.J. Matkowsky, A. Nitzan, M. Ratner, Z. Schuss (1991), “Reply to Comment on: Diffusion theory of multidimensional activated rate processes: the role of anisotropy,” J. Chem. Phys., 95(2), 1425–1426.CrossRef
go back to reference Kłosek, M.M., B.J. Matkowsky, and Z. Schuss (1991), “The Kramers problem in the turnover regime: the role of the stochastic separatrix,” Berichte Der Bunsen-Gesellschaft für Physikalische Chemie, 95 (3), 331–337.CrossRef Kłosek, M.M., B.J. Matkowsky, and Z. Schuss (1991), “The Kramers problem in the turnover regime: the role of the stochastic separatrix,” Berichte Der Bunsen-Gesellschaft für Physikalische Chemie, 95 (3), 331–337.CrossRef
go back to reference Kreevoy, M.M. and D.G. Truhlar (1986), “Transition state theory,” in Investigation of Rates and Mechanisms of Reactions, vol. 6, 4th ed. (C.F. Bernasconi, ed.), J. Wiley, N.Y. Kreevoy, M.M. and D.G. Truhlar (1986), “Transition state theory,” in Investigation of Rates and Mechanisms of Reactions, vol. 6, 4th ed. (C.F. Bernasconi, ed.), J. Wiley, N.Y.
go back to reference Komatsuzaki, T., R.S. Berry (2001), “Dynamical hierarchy in transition states: Why and how does a system climb over the mountain?” PNAS, 98 (14), 7666–7671.CrossRef Komatsuzaki, T., R.S. Berry (2001), “Dynamical hierarchy in transition states: Why and how does a system climb over the mountain?” PNAS, 98 (14), 7666–7671.CrossRef
go back to reference Komatsuzaki, T., R.S. Berry (2002), “A dynamical propensity rule for transitions in chemical reactions,” J. Phys. Chem. A, 106, 10945–10950.CrossRef Komatsuzaki, T., R.S. Berry (2002), “A dynamical propensity rule for transitions in chemical reactions,” J. Phys. Chem. A, 106, 10945–10950.CrossRef
go back to reference Kubo, R. (1957), “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Japan, 12, 570. Kubo, R. (1957), “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Japan, 12, 570.
go back to reference Kubo, R. (1966), “The fluctuation-dissipation theorem,” Rep. Prog. Phys., 29, 255–284.CrossRef Kubo, R. (1966), “The fluctuation-dissipation theorem,” Rep. Prog. Phys., 29, 255–284.CrossRef
go back to reference Landauer, R. and J.A. Swanson (1961), “Frequency factors in the thermally activated process,” Phys. Rev., 121, 1668–1674.CrossRef Landauer, R. and J.A. Swanson (1961), “Frequency factors in the thermally activated process,” Phys. Rev., 121, 1668–1674.CrossRef
go back to reference Langer, J.S. (1969), “Statistical theory of the decay of metastable states,” Ann. Phys. (N.Y.), 54, 258–275. Langer, J.S. (1969), “Statistical theory of the decay of metastable states,” Ann. Phys. (N.Y.), 54, 258–275.
go back to reference Li, C.B., A. Shoujiguchi, M. Toda, and T. Komatsuzaki (2006), “Definability of no-return transition states in high energy regime above reaction threshold,” Phys. Rev. Lett., 97, 028302.CrossRef Li, C.B., A. Shoujiguchi, M. Toda, and T. Komatsuzaki (2006), “Definability of no-return transition states in high energy regime above reaction threshold,” Phys. Rev. Lett., 97, 028302.CrossRef
go back to reference Matkowsky, B.J. and Z. Schuss (1977), “The exit problem for randomly perturbed dynamical systems,” SIAM J. Appl. Math., 33, 365–382.MathSciNetMATHCrossRef Matkowsky, B.J. and Z. Schuss (1977), “The exit problem for randomly perturbed dynamical systems,” SIAM J. Appl. Math., 33, 365–382.MathSciNetMATHCrossRef
go back to reference Matkowsky, B.J., Z. Schuss, and E. Ben-Jacob (1982), “Singular perturbation approach to Kramers’ diffusion problem.” SIAM J. Appl. Math., 42, 835–849.MathSciNetMATHCrossRef Matkowsky, B.J., Z. Schuss, and E. Ben-Jacob (1982), “Singular perturbation approach to Kramers’ diffusion problem.” SIAM J. Appl. Math., 42, 835–849.MathSciNetMATHCrossRef
go back to reference Matkowsky, B.J., Z. Schuss, and C. Tier (1983), “Diffusion across characteristic boundaries with critical points,” SIAM J. Appl. Math., 43, 673–695.MathSciNetMATHCrossRef Matkowsky, B.J., Z. Schuss, and C. Tier (1983), “Diffusion across characteristic boundaries with critical points,” SIAM J. Appl. Math., 43, 673–695.MathSciNetMATHCrossRef
go back to reference Matkowsky, B.J., Z. Schuss, and C. Tier (1984), “Uniform expansion of the transition rate in Kramers’ problem.” J. Stat. Phys., 35 (3,4), 443–456. Matkowsky, B.J., Z. Schuss, and C. Tier (1984), “Uniform expansion of the transition rate in Kramers’ problem.” J. Stat. Phys., 35 (3,4), 443–456.
go back to reference Melnikov, V.I. and S.V. Meshkov (1986), “Theory of activated rate processes: Exact solution of the Kramers problem,” J. Chem. Phys., 85 (2), 1018–1027.CrossRef Melnikov, V.I. and S.V. Meshkov (1986), “Theory of activated rate processes: Exact solution of the Kramers problem,” J. Chem. Phys., 85 (2), 1018–1027.CrossRef
go back to reference Miller, W.H. (1974), “Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants,” J. Chem. Phys., 61, 1823–1834.CrossRef Miller, W.H. (1974), “Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants,” J. Chem. Phys., 61, 1823–1834.CrossRef
go back to reference Naeh, T., M.M. Kłosek, B.J. Matkowsky, and Z. Schuss (1990), “Direct approach to the exit problem,” SIAM J. Appl. Math., 50, 595–627.MathSciNetMATHCrossRef Naeh, T., M.M. Kłosek, B.J. Matkowsky, and Z. Schuss (1990), “Direct approach to the exit problem,” SIAM J. Appl. Math., 50, 595–627.MathSciNetMATHCrossRef
go back to reference Nitzan, A. (2006), Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems (Oxford Graduate Texts), Oxford University Press, USA. Nitzan, A. (2006), Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems (Oxford Graduate Texts), Oxford University Press, USA.
go back to reference Oppenheim, I., K.E. Shuler, and G.H. Weiss (1977), Stochastic Processes in Chemical Physics: The Master Equation, The MIT Press, Cambridge MA. Oppenheim, I., K.E. Shuler, and G.H. Weiss (1977), Stochastic Processes in Chemical Physics: The Master Equation, The MIT Press, Cambridge MA.
go back to reference Pollak, E. (1986), “Theory of activated rate processes: A new derivation of Kramers’ expression,” J. Chem. Phys., 85, 865–867.CrossRef Pollak, E. (1986), “Theory of activated rate processes: A new derivation of Kramers’ expression,” J. Chem. Phys., 85, 865–867.CrossRef
go back to reference Pollak, E., H. Grabert, and P. Hänngi (1989), “Theory of activated rate processes for arbitrary frequency dependent friction: Solution of the turnover problem,” J. Chem. Phys., 91, pp. 4073–4087.CrossRef Pollak, E., H. Grabert, and P. Hänngi (1989), “Theory of activated rate processes for arbitrary frequency dependent friction: Solution of the turnover problem,” J. Chem. Phys., 91, pp. 4073–4087.CrossRef
go back to reference Pollak, E. (1990), “Variational transition state theory for activated rate processes,” J. Chem. Phys., 93, 1116.CrossRef Pollak, E. (1990), “Variational transition state theory for activated rate processes,” J. Chem. Phys., 93, 1116.CrossRef
go back to reference Pollak, E., S.C. Tucker, and B.J. Berne (1990), “Variational transition state theory for reaction rates in dissipative systems,” Phys. Rev. Lett., 65, 1399–1402.CrossRef Pollak, E., S.C. Tucker, and B.J. Berne (1990), “Variational transition state theory for reaction rates in dissipative systems,” Phys. Rev. Lett., 65, 1399–1402.CrossRef
go back to reference Pollak, E., A.M. Berezhkovskii, Z. Schuss (1994), “Activated rate processes: a relation between Hamiltonian and stochastic theories,” J. Chem. Phys., 100 (1), 334–339.CrossRef Pollak, E., A.M. Berezhkovskii, Z. Schuss (1994), “Activated rate processes: a relation between Hamiltonian and stochastic theories,” J. Chem. Phys., 100 (1), 334–339.CrossRef
go back to reference Pollak, E. and P. Talkner (1995), “Transition-state recrossing dynamics in activated rate processes,” Phys. Rev. E, 51 (3), 1868–1878.CrossRef Pollak, E. and P. Talkner (1995), “Transition-state recrossing dynamics in activated rate processes,” Phys. Rev. E, 51 (3), 1868–1878.CrossRef
go back to reference Pollak, E. and P. Talkner (2005), “Reaction rate theory: What it was, where is it today, and where is it going?” Chaos, 15, 026116.MathSciNetCrossRef Pollak, E. and P. Talkner (2005), “Reaction rate theory: What it was, where is it today, and where is it going?” Chaos, 15, 026116.MathSciNetCrossRef
go back to reference Risken, H. (1996), The Fokker–Planck Equation: Methods of Solutions and Applications, Springer-Verlag, NY, 2nd edition. Risken, H. (1996), The Fokker–Planck Equation: Methods of Solutions and Applications, Springer-Verlag, NY, 2nd edition.
go back to reference Ryter, D. (1987a), “Noise-induced transitions in a double-well potential at low friction,” J. Stat. Phys., 49, 751–765.CrossRef Ryter, D. (1987a), “Noise-induced transitions in a double-well potential at low friction,” J. Stat. Phys., 49, 751–765.CrossRef
go back to reference Ryter, D. (1987b), “On the eigenfunctions of the Fokker-Planck operator and of its adjoint,” Physica, 142A, 103–121.MathSciNet Ryter, D. (1987b), “On the eigenfunctions of the Fokker-Planck operator and of its adjoint,” Physica, 142A, 103–121.MathSciNet
go back to reference Schuss, Z. and B.J. Matkowsky (1979), “The exit problem: a new approach to diffusion across potential barriers,” SIAM J. Appl. Math., 35 (3), 604–623.MathSciNetCrossRef Schuss, Z. and B.J. Matkowsky (1979), “The exit problem: a new approach to diffusion across potential barriers,” SIAM J. Appl. Math., 35 (3), 604–623.MathSciNetCrossRef
go back to reference Schuss, Z. and A. Spivak (2002), “The exit distribution on the stochastic separatrix in Kramers’ exit problem,” SIAM J. Appl. Math., 62 (5), 1698–1711.MathSciNetMATHCrossRef Schuss, Z. and A. Spivak (2002), “The exit distribution on the stochastic separatrix in Kramers’ exit problem,” SIAM J. Appl. Math., 62 (5), 1698–1711.MathSciNetMATHCrossRef
go back to reference Schuss, Z. (2010a), “Equilibrium and recrossings of the transition state: what can be learned from diffusion?” J. Phys. Chem. C, 114 (48), 20320–20334.CrossRef Schuss, Z. (2010a), “Equilibrium and recrossings of the transition state: what can be learned from diffusion?” J. Phys. Chem. C, 114 (48), 20320–20334.CrossRef
go back to reference Schuss, Z. (2010b), Theory and Applications of Stochastic Processes, and Analytical Approach, Springer series on Applied Mathematical Sciences 170, NY. Schuss, Z. (2010b), Theory and Applications of Stochastic Processes, and Analytical Approach, Springer series on Applied Mathematical Sciences 170, NY.
go back to reference Schuss, Z. (2011), Nonlinear Filtering and Optimal Phase Tracking, Springer series on Applied Mathematical Sciences 180, NY. Schuss, Z. (2011), Nonlinear Filtering and Optimal Phase Tracking, Springer series on Applied Mathematical Sciences 180, NY.
go back to reference Talkner, P. and P. Hänggi (editors) (1995), New Trends in Kramers’ Reaction Rate Theory, Kluwer, Dordrecht. Talkner, P. and P. Hänggi (editors) (1995), New Trends in Kramers’ Reaction Rate Theory, Kluwer, Dordrecht.
go back to reference Viterbi, A.J. (1966), Principles of Coherent Communications, McGraw-Hill, N.Y.. Viterbi, A.J. (1966), Principles of Coherent Communications, McGraw-Hill, N.Y..
go back to reference Waalkens, H. and S. Wiggins (2004), “Direct construction of a dividing surface of minimal flux for multi-degree-of-freedom systems that cannot be recrossed,” J. Phys. A: Math. Gen., 37, L435–L444.MathSciNetMATHCrossRef Waalkens, H. and S. Wiggins (2004), “Direct construction of a dividing surface of minimal flux for multi-degree-of-freedom systems that cannot be recrossed,” J. Phys. A: Math. Gen., 37, L435–L444.MathSciNetMATHCrossRef
go back to reference Waalkens, H., A. Burbanks, and S. Wiggins (2005), “A formula to compute the microcanonical volume of reactive initial conditions in transition state theory,” J. Phys. A: Math. Gen., 38 L759–L768. Waalkens, H., A. Burbanks, and S. Wiggins (2005), “A formula to compute the microcanonical volume of reactive initial conditions in transition state theory,” J. Phys. A: Math. Gen., 38 L759–L768.
go back to reference Wigner, E. (1938), “The transition state method,” Trans. Faraday Soc., 34, 29–41.CrossRef Wigner, E. (1938), “The transition state method,” Trans. Faraday Soc., 34, 29–41.CrossRef
go back to reference Zwanzig, R. (1973), “Nonlinear generalized Langevin equations,” J. Stat. Phys., 9, 215–220.CrossRef Zwanzig, R. (1973), “Nonlinear generalized Langevin equations,” J. Stat. Phys., 9, 215–220.CrossRef
Metadata
Title
Interfacing at the Stochastic Separatrix
Author
Zeev Schuss
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-7687-0_6