Skip to main content
Top
Published in: Experimental Mechanics 4/2014

01-04-2014

Interrupted Test of Advanced High Strength Steel with Tensile Split Hopkinson Bar Method

Authors: X. Yang, X. Xiong, Z. Yin, H. Wang, J. Wang, D. Chen

Published in: Experimental Mechanics | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The phase fraction evolution in a material during quasi-static and dynamic tests can be studied by interrupting the test at predetermined elongation values. While it is straightforward to interrupt quasi-static tests at a predetermined level of elongation, this interruption presents difficulties at high strain rate conditions. In the present paper, an interruption mechanism has been developed to control the elongation of specimens at high strain rate using a modified split Hopkinson tensile bar. This interruption mechanism is based on the interaction between the test specimen and the external interruption device. The influence of the designed external device on the stress waves and also the ability of the system to support the interruption of the deformation process were considered in the numerical analysis and verified by the experimental results. Finally, the influences of strain and strain rates on the volume fraction evolution of the retained austenite in quenched & partitioned steel were reported.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Davis JR (ed). Tensile testing, 2nd edn. ASM International, Materials Park, OH, 44073-0002 Davis JR (ed). Tensile testing, 2nd edn. ASM International, Materials Park, OH, 44073-0002
2.
go back to reference Hertzberg RW (1989) Deformation and fracture mechanics of engineering materials, 3rd edn. Wiley, New York Hertzberg RW (1989) Deformation and fracture mechanics of engineering materials, 3rd edn. Wiley, New York
4.
go back to reference Senuma TT (2001) Physical metallurgy of modern high strength steel sheets. ISIJ Int 41:520CrossRef Senuma TT (2001) Physical metallurgy of modern high strength steel sheets. ISIJ Int 41:520CrossRef
5.
go back to reference Gussev MN, Busby JT, Byun TS, Parish CM (2013) Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations. Mater Sci Eng A 588:299–307CrossRef Gussev MN, Busby JT, Byun TS, Parish CM (2013) Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations. Mater Sci Eng A 588:299–307CrossRef
6.
go back to reference Rodriguez-Martinez JA, Pesci R, Rusinek A (2011) Experimental study on the martensitic transformation in AISI 304 steel sheets subjected to tension under wide ranges of strain rate at room temperature. Mater Sci Eng A 528:5974–5982CrossRef Rodriguez-Martinez JA, Pesci R, Rusinek A (2011) Experimental study on the martensitic transformation in AISI 304 steel sheets subjected to tension under wide ranges of strain rate at room temperature. Mater Sci Eng A 528:5974–5982CrossRef
7.
go back to reference Ueji R, Takagi Y, Tsuchida N, Shinagawa K, Tanaka Y, Mizuguchi T (2013) Crystallographic orientation dependence of ε martensite transformation during tensile deformation of polycrystalline 30 % Mn austenitic steel. Mater Sci Eng A 576:14–20CrossRef Ueji R, Takagi Y, Tsuchida N, Shinagawa K, Tanaka Y, Mizuguchi T (2013) Crystallographic orientation dependence of ε martensite transformation during tensile deformation of polycrystalline 30 % Mn austenitic steel. Mater Sci Eng A 576:14–20CrossRef
8.
go back to reference Xiong XC, Chen B, Huang MX, Wang JF, Wang L (2013) The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Mater 68:321–324CrossRef Xiong XC, Chen B, Huang MX, Wang JF, Wang L (2013) The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Mater 68:321–324CrossRef
9.
go back to reference Villa M, Grumsen FB, Pantleon K, Somers MAJ (2013) Martensitic transformation and stress partitioning in a high-carbon steel. Scripta Mater 67:621–624CrossRef Villa M, Grumsen FB, Pantleon K, Somers MAJ (2013) Martensitic transformation and stress partitioning in a high-carbon steel. Scripta Mater 67:621–624CrossRef
10.
go back to reference Nambu S, Shibuta N, Ojima M, Inoue J, Koseki T, Bhadeshia HKDH (2013) In situ observations and crystallographic analysis of martensitic transformation in steel. Acta Mater 61:4831–4839CrossRef Nambu S, Shibuta N, Ojima M, Inoue J, Koseki T, Bhadeshia HKDH (2013) In situ observations and crystallographic analysis of martensitic transformation in steel. Acta Mater 61:4831–4839CrossRef
11.
go back to reference Gavriljuk VG, Theisen W, Sirosh VV, Polshin EV, Kortmann A, Mogilny GS, Petrov YN, Tarusin YV (2013) Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater 61:1705–1715CrossRef Gavriljuk VG, Theisen W, Sirosh VV, Polshin EV, Kortmann A, Mogilny GS, Petrov YN, Tarusin YV (2013) Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater 61:1705–1715CrossRef
12.
go back to reference Cakmak E, Choo H, An K, Ren Y (2012) A synchrotron X-ray diffraction study on the phase transformation kinetics and texture evolution of a TRIP steel subjected to torsional loading. Acta Mater 60:6703–6713CrossRef Cakmak E, Choo H, An K, Ren Y (2012) A synchrotron X-ray diffraction study on the phase transformation kinetics and texture evolution of a TRIP steel subjected to torsional loading. Acta Mater 60:6703–6713CrossRef
13.
go back to reference Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30:725–775CrossRef Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30:725–775CrossRef
14.
go back to reference Harding J, Wood EO, Campbell JD (1960) Tensile testing of materials at impact rates of strain. J Mech Eng Sci 2:88–96CrossRef Harding J, Wood EO, Campbell JD (1960) Tensile testing of materials at impact rates of strain. J Mech Eng Sci 2:88–96CrossRef
15.
go back to reference Lindholm US, Yeakley LM (1968) High strain-rate testing: tension and compression. Exp Mech 8:1–9CrossRef Lindholm US, Yeakley LM (1968) High strain-rate testing: tension and compression. Exp Mech 8:1–9CrossRef
16.
go back to reference Albertini C, Montagnani M (1976) Wave propagation effects in dynamic loading. Nucl Eng Des 37:115–124CrossRef Albertini C, Montagnani M (1976) Wave propagation effects in dynamic loading. Nucl Eng Des 37:115–124CrossRef
17.
go back to reference Nicholas T (1981) Tensile testing of materials at high rates of strain. Exp Mech 21:177–185CrossRef Nicholas T (1981) Tensile testing of materials at high rates of strain. Exp Mech 21:177–185CrossRef
18.
go back to reference Staab GH, Gilat A (1991) A direct-tension split Hopkinson bar for high strain-rate testing. Exp Mech 31:232–235CrossRef Staab GH, Gilat A (1991) A direct-tension split Hopkinson bar for high strain-rate testing. Exp Mech 31:232–235CrossRef
19.
go back to reference Thakur A, Nemat-Nasser S, Vecchio KS (1996) Dynamic Bauschinger effect. Acta Mater 44:2797–2807CrossRef Thakur A, Nemat-Nasser S, Vecchio KS (1996) Dynamic Bauschinger effect. Acta Mater 44:2797–2807CrossRef
20.
go back to reference Verleysen P, Degrieck J (2004) Experimental investigation of the deformation of Hopkinson bar specimens. Int J Impact Eng 30:239–253CrossRef Verleysen P, Degrieck J (2004) Experimental investigation of the deformation of Hopkinson bar specimens. Int J Impact Eng 30:239–253CrossRef
21.
go back to reference Nemat-Nasser S, Isacs JB, Starrett JE (1991) Hopkinson techniques for dynamic recovery experiments. J Math Phys Sci 435:371–391CrossRef Nemat-Nasser S, Isacs JB, Starrett JE (1991) Hopkinson techniques for dynamic recovery experiments. J Math Phys Sci 435:371–391CrossRef
22.
go back to reference Hosur MV, Alexande J, Vaidya UK, Jeelani S (2001) High strain rate compression response of carbon/epoxy laminate composites. Compos Struct 52:405–417CrossRef Hosur MV, Alexande J, Vaidya UK, Jeelani S (2001) High strain rate compression response of carbon/epoxy laminate composites. Compos Struct 52:405–417CrossRef
23.
go back to reference Jia D, Lennon AM, Ramesh KT (2000) High strain rate pressure-shear recovery: a new experimental technique. Int J Solids Struct 37:1679–1699CrossRefMATH Jia D, Lennon AM, Ramesh KT (2000) High strain rate pressure-shear recovery: a new experimental technique. Int J Solids Struct 37:1679–1699CrossRefMATH
24.
go back to reference El-Saeid Essa Y, Lopez-Puente J, Perez-Castellanos JL (2006) Numerical simulation and experimental study of a mechanism for Hopkinson bar test interruption. J Strain Anal 42:163–172CrossRef El-Saeid Essa Y, Lopez-Puente J, Perez-Castellanos JL (2006) Numerical simulation and experimental study of a mechanism for Hopkinson bar test interruption. J Strain Anal 42:163–172CrossRef
25.
go back to reference Ma DF, Chen DN, Wu SX, Wang HR, Hou YJ, Cai CY (2010) An interrupted tensile testing at high strain rates for pure copper bars. J Appl Phys 108:114902CrossRef Ma DF, Chen DN, Wu SX, Wang HR, Hou YJ, Cai CY (2010) An interrupted tensile testing at high strain rates for pure copper bars. J Appl Phys 108:114902CrossRef
26.
go back to reference Speer J, Matlock DK, De Cooman BC, Schroth JG (2003) Carbon partitioning into austenite after martensite transformation. Acta Mater 51:2611–2622CrossRef Speer J, Matlock DK, De Cooman BC, Schroth JG (2003) Carbon partitioning into austenite after martensite transformation. Acta Mater 51:2611–2622CrossRef
27.
go back to reference Clark AJ, Speer JG, Miller MK, Hackenberg RE, Edmonds DV, Matlock DK, Rizzo FC, Clarke KD, De Moor E (2008) Carbon partitioning to austenite from martensite or bainite during the Quench and Partition (Q&P) process: a critical assessment. Acta Mater 56:16–22CrossRef Clark AJ, Speer JG, Miller MK, Hackenberg RE, Edmonds DV, Matlock DK, Rizzo FC, Clarke KD, De Moor E (2008) Carbon partitioning to austenite from martensite or bainite during the Quench and Partition (Q&P) process: a critical assessment. Acta Mater 56:16–22CrossRef
28.
go back to reference Speer JG, Rizzo-Assunção FC, Matlock DK, Edmonds DV (2005) The “Quenching and Partitioning” process: background and recent progress. Mater Res 8:417–423CrossRef Speer JG, Rizzo-Assunção FC, Matlock DK, Edmonds DV (2005) The “Quenching and Partitioning” process: background and recent progress. Mater Res 8:417–423CrossRef
29.
go back to reference Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42:93–106CrossRef Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42:93–106CrossRef
30.
go back to reference Frew DJ, Forrestal MJ, Chen W (2005) Pulse shaping techniques for testing elastic–plastic materials with a split Hopkinson pressure bar. Exp Mech 45:186–195CrossRef Frew DJ, Forrestal MJ, Chen W (2005) Pulse shaping techniques for testing elastic–plastic materials with a split Hopkinson pressure bar. Exp Mech 45:186–195CrossRef
31.
go back to reference Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc (B) 62:676–700CrossRef Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc (B) 62:676–700CrossRef
32.
go back to reference Hallquist JO (2003) LS-DYNA keywords use’s manual (version 970). LSTC, USA Hallquist JO (2003) LS-DYNA keywords use’s manual (version 970). LSTC, USA
33.
go back to reference Johnson GR, Cook WH (1983) A constitutive mode and data for metals subjected to large strains, high strain rate and high temperatures. Proceedings of Seventh Int Symposium on Ballistics, pp 541–547 Johnson GR, Cook WH (1983) A constitutive mode and data for metals subjected to large strains, high strain rate and high temperatures. Proceedings of Seventh Int Symposium on Ballistics, pp 541–547
Metadata
Title
Interrupted Test of Advanced High Strength Steel with Tensile Split Hopkinson Bar Method
Authors
X. Yang
X. Xiong
Z. Yin
H. Wang
J. Wang
D. Chen
Publication date
01-04-2014
Publisher
Springer US
Published in
Experimental Mechanics / Issue 4/2014
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-013-9828-0

Other articles of this Issue 4/2014

Experimental Mechanics 4/2014 Go to the issue

Premium Partners