Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

1. Introduction

Author : Joe H. Chow

Published in: Power System Coherency and Model Reduction

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This introductory chapter gives a brief overview of power system coherency and model reduction literature. This survey focuses on both the early results and some more recent developments, and organizes power system model reduction techniques into two broad categories. One category of methods is to use coherency and aggregation methods to obtain reduced models in the form of nonlinear power system models. The other category is to treat the external system or the less relevant part of the system as an input–output model and obtain a lower order linear or nonlinear model based on the input–output properties. This chapter also provides a synopsis of the remaining chapters in this monograph.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
This discussion can readily be extended to multiple external systems, as well as some buffer or boundary systems between the study system and the external system.
 
2
Note that (1.7) can be shown to be equivalent to the formulation in [17] using the study system boundary buses as inputs and current injected into the study system as the outputs, and maintaining a linearized model of the external system power network.
 
Literature
1.
go back to reference R.W. deMello, R. Podmore, K.N. Stanton, Coherency-based dynamic equivalents: Applications in transient stability studies. PICA Conference Proceedings (1975) , pp. 23–31 R.W. deMello, R. Podmore, K.N. Stanton, Coherency-based dynamic equivalents: Applications in transient stability studies. PICA Conference Proceedings (1975) , pp. 23–31
2.
go back to reference R. Podmore, Identification of coherent generators for dynamic equivalents. IEEE. Trans. Power Apparatus Syst. PAS–97(4), 1344–1354 (1978)CrossRef R. Podmore, Identification of coherent generators for dynamic equivalents. IEEE. Trans. Power Apparatus Syst. PAS–97(4), 1344–1354 (1978)CrossRef
3.
go back to reference A.J. Germond, R. Podmore, Dynamic aggregation of generating unit models. IEEE Trans. Power Apparatus Syst. PAS–97(4), 1060–1069 (1978)CrossRef A.J. Germond, R. Podmore, Dynamic aggregation of generating unit models. IEEE Trans. Power Apparatus Syst. PAS–97(4), 1060–1069 (1978)CrossRef
4.
go back to reference J. Lawler, R.A. Schlueter, P. Rusche, D.L. Hackett, Modal-Coherent Equivalents Derived from an RMS Coherency Measure. IEEE Trans. Power Apparatus Syst. PAS–99(4), 1415–1425 (1980)CrossRef J. Lawler, R.A. Schlueter, P. Rusche, D.L. Hackett, Modal-Coherent Equivalents Derived from an RMS Coherency Measure. IEEE Trans. Power Apparatus Syst. PAS–99(4), 1415–1425 (1980)CrossRef
5.
go back to reference J.H. Chow, G. Peponides, P.V. Kokotović, B. Avramović, J.R. Winkelman, Time-Scale Modeling of Dynamic Networks with Applications to Power Systems (Springer-Verlag, New York, 1982)MATHCrossRef J.H. Chow, G. Peponides, P.V. Kokotović, B. Avramović, J.R. Winkelman, Time-Scale Modeling of Dynamic Networks with Applications to Power Systems (Springer-Verlag, New York, 1982)MATHCrossRef
6.
go back to reference J.H. Chow, J.R. Winkelman, M.A. Pai, P.W. Sauer, Singular perturbation analysis of large scale power systems. J. Electr. Power Energy Syst. 12, 117–126 (1990)CrossRef J.H. Chow, J.R. Winkelman, M.A. Pai, P.W. Sauer, Singular perturbation analysis of large scale power systems. J. Electr. Power Energy Syst. 12, 117–126 (1990)CrossRef
7.
go back to reference C.W. Taylor, D.C. Erickson, Recording and analyzing the July 2 cascading outage. IEEE Comput. Appl. Power. 10(1), 26–30 (1997)CrossRef C.W. Taylor, D.C. Erickson, Recording and analyzing the July 2 cascading outage. IEEE Comput. Appl. Power. 10(1), 26–30 (1997)CrossRef
8.
go back to reference J.H. Chow, J. Cullum, R.A. Willoughby, A sparsity-based technique for identifying slow-coherent areas in large power systems. EEE Trans. Power Apparatus Syst. PAS–103, 463–473 (1983) J.H. Chow, J. Cullum, R.A. Willoughby, A sparsity-based technique for identifying slow-coherent areas in large power systems. EEE Trans. Power Apparatus Syst. PAS–103, 463–473 (1983)
9.
go back to reference N. Martins, Efficient eigenvalue and frequency response methods applied to power system small-signal stability studies. IEEE Trans. Power Syst. 1, 217–225 (1986)CrossRef N. Martins, Efficient eigenvalue and frequency response methods applied to power system small-signal stability studies. IEEE Trans. Power Syst. 1, 217–225 (1986)CrossRef
10.
go back to reference N. Uchida, T. Nagao, A new eigen-analysis methcd of steady-state stability studies for large power systems: S matrix method. IEEE Trans. Power Syst. 2, 706–714 (1988)CrossRef N. Uchida, T. Nagao, A new eigen-analysis methcd of steady-state stability studies for large power systems: S matrix method. IEEE Trans. Power Syst. 2, 706–714 (1988)CrossRef
11.
go back to reference L. Wang, A. Semlyen, Applications of sparse eigenvalue techniques to the small signal stabiity analysis of large power systems. IEEE Trans. Power Syst. 5, 635–642 (1990)CrossRef L. Wang, A. Semlyen, Applications of sparse eigenvalue techniques to the small signal stabiity analysis of large power systems. IEEE Trans. Power Syst. 5, 635–642 (1990)CrossRef
12.
go back to reference J. Zaborszky, K.-W. Whang, G.M. Huang, L.-J. Chiang, and S.-Y. Lin, A clustered dynamical model for a class of linear autonomous systems using simple enumerative sorting, IEEE Trans on Circuits and Systems, vol. CAS-29, 747–758, (1982). J. Zaborszky, K.-W. Whang, G.M. Huang, L.-J. Chiang, and S.-Y. Lin, A clustered dynamical model for a class of linear autonomous systems using simple enumerative sorting, IEEE Trans on Circuits and Systems, vol. CAS-29, 747–758, (1982).
13.
go back to reference R. Nath, S.S. Lamba, K.S.P. Rao, Coherency based system decomposition into study and external areas using weak coupling. IEEE Trans. Power Apparatus Syst. PAS–104, 1443–1449 (1985)CrossRef R. Nath, S.S. Lamba, K.S.P. Rao, Coherency based system decomposition into study and external areas using weak coupling. IEEE Trans. Power Apparatus Syst. PAS–104, 1443–1449 (1985)CrossRef
14.
go back to reference P.V. Kokotović, H. Khalil, J. O’Reilly, Singular Perturbation Methods in Control: Analysis and Design (Academic Press, London, 1986)MATH P.V. Kokotović, H. Khalil, J. O’Reilly, Singular Perturbation Methods in Control: Analysis and Design (Academic Press, London, 1986)MATH
15.
go back to reference R.A. Date, J.H. Chow, Aggregation properties of linearized two-times-scale power networks. IEEE Trans. Circuits Syst. 38, 720–730 (1991) R.A. Date, J.H. Chow, Aggregation properties of linearized two-times-scale power networks. IEEE Trans. Circuits Syst. 38, 720–730 (1991)
16.
go back to reference J.H. Chow, New algorithms for slow coherency aggregation of large power systems, in Systems and Control Theory for Power Systems, IMA Volumes in Mathematics and its Applications, vol. 64, ed. by J.H. Chow, R.J. Thomas, P.V. Kokotović (Springer-Verlag, New York, 1994) J.H. Chow, New algorithms for slow coherency aggregation of large power systems, in Systems and Control Theory for Power Systems, IMA Volumes in Mathematics and its Applications, vol. 64, ed. by J.H. Chow, R.J. Thomas, P.V. Kokotović (Springer-Verlag, New York, 1994)
17.
go back to reference J.M. Undrill, A.E. Turner, Construction of power system electromechanical equivalents by modal analysis. IEEE Trans. Power Apparatus Syst. PAS–90, 2049–2059 (1971) J.M. Undrill, A.E. Turner, Construction of power system electromechanical equivalents by modal analysis. IEEE Trans. Power Apparatus Syst. PAS–90, 2049–2059 (1971)
18.
19.
go back to reference J.H. Chow, K.W. Cheung, A toolbox for power system dynamics and control engineering education. IEEE Trans. Power Syst. 7, 1559–1564 (1992)CrossRef J.H. Chow, K.W. Cheung, A toolbox for power system dynamics and control engineering education. IEEE Trans. Power Syst. 7, 1559–1564 (1992)CrossRef
20.
go back to reference S.D. Dukić, A.T. Sarić, Dynamic model reduction: An overview of available techniques with application to power systems, Serbian. J. Electr. Eng. 9(2), 131–169 (2012) S.D. Dukić, A.T. Sarić, Dynamic model reduction: An overview of available techniques with application to power systems, Serbian. J. Electr. Eng. 9(2), 131–169 (2012)
21.
go back to reference J.M. Undrill, J.A. Casazza, E.M. Gulachenski, L.K. Kirchmayer, Electromechanical equivalents for use in power system stability studies. IEEE Trans. Power Apparatus Syst. PAS–90, 2060–2071 (1971)CrossRef J.M. Undrill, J.A. Casazza, E.M. Gulachenski, L.K. Kirchmayer, Electromechanical equivalents for use in power system stability studies. IEEE Trans. Power Apparatus Syst. PAS–90, 2060–2071 (1971)CrossRef
22.
go back to reference W.W. Price, E.M. Gulachenski, P. Kundur, F.J. Lange, G.C. Loehr, B.A. Roth, R.F. Silva, Testing of the modal dynamic equivalents technique. IEEE Trans. Power Apparatus Syst. PAS–97, 1366–1372 (1978) W.W. Price, E.M. Gulachenski, P. Kundur, F.J. Lange, G.C. Loehr, B.A. Roth, R.F. Silva, Testing of the modal dynamic equivalents technique. IEEE Trans. Power Apparatus Syst. PAS–97, 1366–1372 (1978)
23.
go back to reference W.W. Price, B.A. Roth, B.A. Roth, Large-scale implementation of modal dynamic equivalents. IEEE Trans. Power Apparatus Syst. PAS–100, 3811–3817 (1981) W.W. Price, B.A. Roth, B.A. Roth, Large-scale implementation of modal dynamic equivalents. IEEE Trans. Power Apparatus Syst. PAS–100, 3811–3817 (1981)
24.
25.
go back to reference I.J. Pérez-Arriaga, G.C. Verghese, F.C. Schweppe, Selective modal analysis with applications to electric power systems. part I: Heuristic introduction. part II: The dynamic stability problem. IEEE Trans. Power Apparatus Syst. PAS–101, 3117–3134 (1982)CrossRef I.J. Pérez-Arriaga, G.C. Verghese, F.C. Schweppe, Selective modal analysis with applications to electric power systems. part I: Heuristic introduction. part II: The dynamic stability problem. IEEE Trans. Power Apparatus Syst. PAS–101, 3117–3134 (1982)CrossRef
26.
go back to reference F.L. Pagola, L. Rouco, I.J. Pérez-Arriaga, Analysis and control of small signal stability in electric power systems by selective modal analysis, in Eigenanalysis and Frequency Domain Methods for System Dynamic Performance. (IEEE Publication 90TH0292-3-PWR, 1990) , pp. 77–96 F.L. Pagola, L. Rouco, I.J. Pérez-Arriaga, Analysis and control of small signal stability in electric power systems by selective modal analysis, in Eigenanalysis and Frequency Domain Methods for System Dynamic Performance. (IEEE Publication 90TH0292-3-PWR, 1990) , pp. 77–96
27.
go back to reference B.C. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Autom. Control AC–26, 17–32 (1981)CrossRef B.C. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Autom. Control AC–26, 17–32 (1981)CrossRef
28.
go back to reference K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their \(L^\infty \) norms. International Journal of Control 39, 1115–1193 (1984) K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their \(L^\infty \) norms. International Journal of Control 39, 1115–1193 (1984)
29.
go back to reference P. Benner, V. Mehrmann, D.C. Sorensen, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Sciences and Engineering, vol. 45 (Springer, Berlin, 2005)CrossRef P. Benner, V. Mehrmann, D.C. Sorensen, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Sciences and Engineering, vol. 45 (Springer, Berlin, 2005)CrossRef
30.
31.
go back to reference J.R. Winkelman, J.H. Chow, B.C. Bowler, B. Avramovic, P.V. Kokotović, An analysis of interarea dynamics of multi-machine systems. IEEE Trans. Power Apparatus Syst. PAS–100, 754–763 (1981) J.R. Winkelman, J.H. Chow, B.C. Bowler, B. Avramovic, P.V. Kokotović, An analysis of interarea dynamics of multi-machine systems. IEEE Trans. Power Apparatus Syst. PAS–100, 754–763 (1981)
32.
go back to reference S. Haykin, Neural Networks and Learning Machines, 3rd edn. (Prentice Hall, Englewood Cliffs NJ, 2008) S. Haykin, Neural Networks and Learning Machines, 3rd edn. (Prentice Hall, Englewood Cliffs NJ, 2008)
33.
go back to reference A.G. Phadke, J.S. Thorp, Synchronized Phasor Measurements and their Applications (Springer, New York, 2008)MATHCrossRef A.G. Phadke, J.S. Thorp, Synchronized Phasor Measurements and their Applications (Springer, New York, 2008)MATHCrossRef
34.
go back to reference D.J. Trudnowski, Estimating electromechanical mode shape from synchrophasor measurements. IEEE Trans. Power Syst. 23(3), 1188–1195 (2008)CrossRef D.J. Trudnowski, Estimating electromechanical mode shape from synchrophasor measurements. IEEE Trans. Power Syst. 23(3), 1188–1195 (2008)CrossRef
35.
go back to reference J.H. Chow, A. Chakrabortty, L. Vanfretti, M. Arcak, Estimation of radial power system transfer path dynamic parameters using synchronized phasor data. IEEE Trans. Power Syst. 23(2), 564–571 (May 2008)CrossRef J.H. Chow, A. Chakrabortty, L. Vanfretti, M. Arcak, Estimation of radial power system transfer path dynamic parameters using synchronized phasor data. IEEE Trans. Power Syst. 23(2), 564–571 (May 2008)CrossRef
36.
go back to reference A. Murdoch, G. Boukarim, Performance Criteria and Tuning Techniques, Chapter 3 in IEEE Tutorial Course - Power System Stabilization via Excitation Control (Tampa, Florida, 2007) A. Murdoch, G. Boukarim, Performance Criteria and Tuning Techniques, Chapter 3 in IEEE Tutorial Course - Power System Stabilization via Excitation Control (Tampa, Florida, 2007)
37.
go back to reference E.V. Larsen, J.H. Chow, SVC control design concepts for system dynamic performance, in IEEE Power Engineering Society Publication 87TH0187-5-PWR Application of Static Var Systems for System Dynamic Performance, 1987 E.V. Larsen, J.H. Chow, SVC control design concepts for system dynamic performance, in IEEE Power Engineering Society Publication 87TH0187-5-PWR Application of Static Var Systems for System Dynamic Performance, 1987
38.
go back to reference E.V. Larsen, J.J. Sanchez-Gasca, J.H. Chow, Concepts for design of FACTS controllers to damp power swings. IEEE Trans. Power Syst. 10, 948–956 (1995)CrossRef E.V. Larsen, J.J. Sanchez-Gasca, J.H. Chow, Concepts for design of FACTS controllers to damp power swings. IEEE Trans. Power Syst. 10, 948–956 (1995)CrossRef
39.
go back to reference C. Gama, L. Änguist, G. Ingeström, M. Noroozian, Commissioning and operative experience of TCSC for damping power oscillation in the Brazilian north-south interconnection. Paper 14–104, CIGRE Session 2000 C. Gama, L. Änguist, G. Ingeström, M. Noroozian, Commissioning and operative experience of TCSC for damping power oscillation in the Brazilian north-south interconnection. Paper 14–104, CIGRE Session 2000
40.
go back to reference V. Centeno, A.G. Phadke, A. Edris, J. Benton, M. Gaugi, G. Michel, An adaptive out-of-step relay. IEEE Trans Power Syst. 26, 334–343 (1997) V. Centeno, A.G. Phadke, A. Edris, J. Benton, M. Gaugi, G. Michel, An adaptive out-of-step relay. IEEE Trans Power Syst. 26, 334–343 (1997)
41.
go back to reference H. You, V. Vittal, X. Wang, Slow cherency-based islanding. IEEE Trans. Power Syst. 19, 483–491 (2004) H. You, V. Vittal, X. Wang, Slow cherency-based islanding. IEEE Trans. Power Syst. 19, 483–491 (2004)
42.
go back to reference G. Xu, V. Vittal, A. Anatoliy, J.E. Thalman, Controlled islanding demonstrations in WECC system. IEEE Trans. Power Deliv. 12, 61–71 (2011) G. Xu, V. Vittal, A. Anatoliy, J.E. Thalman, Controlled islanding demonstrations in WECC system. IEEE Trans. Power Deliv. 12, 61–71 (2011)
43.
go back to reference A.-A. Fouad, V. Vittal, Power System Transient Stability Analysis using the Transient Energy Function Method (Prentice-Hall, Englewood Cliffs NJ, 1992) A.-A. Fouad, V. Vittal, Power System Transient Stability Analysis using the Transient Energy Function Method (Prentice-Hall, Englewood Cliffs NJ, 1992)
44.
go back to reference P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1994) P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1994)
45.
go back to reference L. Vanfretti, Phasor measurement based state estimation of electric power systems and linearized analysis of power system network oscillations, PhD thesis, Rensselaer Polytechnic Institute, 2009 L. Vanfretti, Phasor measurement based state estimation of electric power systems and linearized analysis of power system network oscillations, PhD thesis, Rensselaer Polytechnic Institute, 2009
Metadata
Title
Introduction
Author
Joe H. Chow
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-1803-0_1