Skip to main content
Erschienen in:
Buchtitelbild

2013 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Joe H. Chow

Erschienen in: Power System Coherency and Model Reduction

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This introductory chapter gives a brief overview of power system coherency and model reduction literature. This survey focuses on both the early results and some more recent developments, and organizes power system model reduction techniques into two broad categories. One category of methods is to use coherency and aggregation methods to obtain reduced models in the form of nonlinear power system models. The other category is to treat the external system or the less relevant part of the system as an input–output model and obtain a lower order linear or nonlinear model based on the input–output properties. This chapter also provides a synopsis of the remaining chapters in this monograph.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This discussion can readily be extended to multiple external systems, as well as some buffer or boundary systems between the study system and the external system.
 
2
Note that (1.7) can be shown to be equivalent to the formulation in [17] using the study system boundary buses as inputs and current injected into the study system as the outputs, and maintaining a linearized model of the external system power network.
 
Literatur
1.
Zurück zum Zitat R.W. deMello, R. Podmore, K.N. Stanton, Coherency-based dynamic equivalents: Applications in transient stability studies. PICA Conference Proceedings (1975) , pp. 23–31 R.W. deMello, R. Podmore, K.N. Stanton, Coherency-based dynamic equivalents: Applications in transient stability studies. PICA Conference Proceedings (1975) , pp. 23–31
2.
Zurück zum Zitat R. Podmore, Identification of coherent generators for dynamic equivalents. IEEE. Trans. Power Apparatus Syst. PAS–97(4), 1344–1354 (1978)CrossRef R. Podmore, Identification of coherent generators for dynamic equivalents. IEEE. Trans. Power Apparatus Syst. PAS–97(4), 1344–1354 (1978)CrossRef
3.
Zurück zum Zitat A.J. Germond, R. Podmore, Dynamic aggregation of generating unit models. IEEE Trans. Power Apparatus Syst. PAS–97(4), 1060–1069 (1978)CrossRef A.J. Germond, R. Podmore, Dynamic aggregation of generating unit models. IEEE Trans. Power Apparatus Syst. PAS–97(4), 1060–1069 (1978)CrossRef
4.
Zurück zum Zitat J. Lawler, R.A. Schlueter, P. Rusche, D.L. Hackett, Modal-Coherent Equivalents Derived from an RMS Coherency Measure. IEEE Trans. Power Apparatus Syst. PAS–99(4), 1415–1425 (1980)CrossRef J. Lawler, R.A. Schlueter, P. Rusche, D.L. Hackett, Modal-Coherent Equivalents Derived from an RMS Coherency Measure. IEEE Trans. Power Apparatus Syst. PAS–99(4), 1415–1425 (1980)CrossRef
5.
Zurück zum Zitat J.H. Chow, G. Peponides, P.V. Kokotović, B. Avramović, J.R. Winkelman, Time-Scale Modeling of Dynamic Networks with Applications to Power Systems (Springer-Verlag, New York, 1982)MATHCrossRef J.H. Chow, G. Peponides, P.V. Kokotović, B. Avramović, J.R. Winkelman, Time-Scale Modeling of Dynamic Networks with Applications to Power Systems (Springer-Verlag, New York, 1982)MATHCrossRef
6.
Zurück zum Zitat J.H. Chow, J.R. Winkelman, M.A. Pai, P.W. Sauer, Singular perturbation analysis of large scale power systems. J. Electr. Power Energy Syst. 12, 117–126 (1990)CrossRef J.H. Chow, J.R. Winkelman, M.A. Pai, P.W. Sauer, Singular perturbation analysis of large scale power systems. J. Electr. Power Energy Syst. 12, 117–126 (1990)CrossRef
7.
Zurück zum Zitat C.W. Taylor, D.C. Erickson, Recording and analyzing the July 2 cascading outage. IEEE Comput. Appl. Power. 10(1), 26–30 (1997)CrossRef C.W. Taylor, D.C. Erickson, Recording and analyzing the July 2 cascading outage. IEEE Comput. Appl. Power. 10(1), 26–30 (1997)CrossRef
8.
Zurück zum Zitat J.H. Chow, J. Cullum, R.A. Willoughby, A sparsity-based technique for identifying slow-coherent areas in large power systems. EEE Trans. Power Apparatus Syst. PAS–103, 463–473 (1983) J.H. Chow, J. Cullum, R.A. Willoughby, A sparsity-based technique for identifying slow-coherent areas in large power systems. EEE Trans. Power Apparatus Syst. PAS–103, 463–473 (1983)
9.
Zurück zum Zitat N. Martins, Efficient eigenvalue and frequency response methods applied to power system small-signal stability studies. IEEE Trans. Power Syst. 1, 217–225 (1986)CrossRef N. Martins, Efficient eigenvalue and frequency response methods applied to power system small-signal stability studies. IEEE Trans. Power Syst. 1, 217–225 (1986)CrossRef
10.
Zurück zum Zitat N. Uchida, T. Nagao, A new eigen-analysis methcd of steady-state stability studies for large power systems: S matrix method. IEEE Trans. Power Syst. 2, 706–714 (1988)CrossRef N. Uchida, T. Nagao, A new eigen-analysis methcd of steady-state stability studies for large power systems: S matrix method. IEEE Trans. Power Syst. 2, 706–714 (1988)CrossRef
11.
Zurück zum Zitat L. Wang, A. Semlyen, Applications of sparse eigenvalue techniques to the small signal stabiity analysis of large power systems. IEEE Trans. Power Syst. 5, 635–642 (1990)CrossRef L. Wang, A. Semlyen, Applications of sparse eigenvalue techniques to the small signal stabiity analysis of large power systems. IEEE Trans. Power Syst. 5, 635–642 (1990)CrossRef
12.
Zurück zum Zitat J. Zaborszky, K.-W. Whang, G.M. Huang, L.-J. Chiang, and S.-Y. Lin, A clustered dynamical model for a class of linear autonomous systems using simple enumerative sorting, IEEE Trans on Circuits and Systems, vol. CAS-29, 747–758, (1982). J. Zaborszky, K.-W. Whang, G.M. Huang, L.-J. Chiang, and S.-Y. Lin, A clustered dynamical model for a class of linear autonomous systems using simple enumerative sorting, IEEE Trans on Circuits and Systems, vol. CAS-29, 747–758, (1982).
13.
Zurück zum Zitat R. Nath, S.S. Lamba, K.S.P. Rao, Coherency based system decomposition into study and external areas using weak coupling. IEEE Trans. Power Apparatus Syst. PAS–104, 1443–1449 (1985)CrossRef R. Nath, S.S. Lamba, K.S.P. Rao, Coherency based system decomposition into study and external areas using weak coupling. IEEE Trans. Power Apparatus Syst. PAS–104, 1443–1449 (1985)CrossRef
14.
Zurück zum Zitat P.V. Kokotović, H. Khalil, J. O’Reilly, Singular Perturbation Methods in Control: Analysis and Design (Academic Press, London, 1986)MATH P.V. Kokotović, H. Khalil, J. O’Reilly, Singular Perturbation Methods in Control: Analysis and Design (Academic Press, London, 1986)MATH
15.
Zurück zum Zitat R.A. Date, J.H. Chow, Aggregation properties of linearized two-times-scale power networks. IEEE Trans. Circuits Syst. 38, 720–730 (1991) R.A. Date, J.H. Chow, Aggregation properties of linearized two-times-scale power networks. IEEE Trans. Circuits Syst. 38, 720–730 (1991)
16.
Zurück zum Zitat J.H. Chow, New algorithms for slow coherency aggregation of large power systems, in Systems and Control Theory for Power Systems, IMA Volumes in Mathematics and its Applications, vol. 64, ed. by J.H. Chow, R.J. Thomas, P.V. Kokotović (Springer-Verlag, New York, 1994) J.H. Chow, New algorithms for slow coherency aggregation of large power systems, in Systems and Control Theory for Power Systems, IMA Volumes in Mathematics and its Applications, vol. 64, ed. by J.H. Chow, R.J. Thomas, P.V. Kokotović (Springer-Verlag, New York, 1994)
17.
Zurück zum Zitat J.M. Undrill, A.E. Turner, Construction of power system electromechanical equivalents by modal analysis. IEEE Trans. Power Apparatus Syst. PAS–90, 2049–2059 (1971) J.M. Undrill, A.E. Turner, Construction of power system electromechanical equivalents by modal analysis. IEEE Trans. Power Apparatus Syst. PAS–90, 2049–2059 (1971)
18.
Zurück zum Zitat G. Rogers, Power System Oscillations (Kluwer Academic, Dordrecht, 2000)CrossRef G. Rogers, Power System Oscillations (Kluwer Academic, Dordrecht, 2000)CrossRef
19.
Zurück zum Zitat J.H. Chow, K.W. Cheung, A toolbox for power system dynamics and control engineering education. IEEE Trans. Power Syst. 7, 1559–1564 (1992)CrossRef J.H. Chow, K.W. Cheung, A toolbox for power system dynamics and control engineering education. IEEE Trans. Power Syst. 7, 1559–1564 (1992)CrossRef
20.
Zurück zum Zitat S.D. Dukić, A.T. Sarić, Dynamic model reduction: An overview of available techniques with application to power systems, Serbian. J. Electr. Eng. 9(2), 131–169 (2012) S.D. Dukić, A.T. Sarić, Dynamic model reduction: An overview of available techniques with application to power systems, Serbian. J. Electr. Eng. 9(2), 131–169 (2012)
21.
Zurück zum Zitat J.M. Undrill, J.A. Casazza, E.M. Gulachenski, L.K. Kirchmayer, Electromechanical equivalents for use in power system stability studies. IEEE Trans. Power Apparatus Syst. PAS–90, 2060–2071 (1971)CrossRef J.M. Undrill, J.A. Casazza, E.M. Gulachenski, L.K. Kirchmayer, Electromechanical equivalents for use in power system stability studies. IEEE Trans. Power Apparatus Syst. PAS–90, 2060–2071 (1971)CrossRef
22.
Zurück zum Zitat W.W. Price, E.M. Gulachenski, P. Kundur, F.J. Lange, G.C. Loehr, B.A. Roth, R.F. Silva, Testing of the modal dynamic equivalents technique. IEEE Trans. Power Apparatus Syst. PAS–97, 1366–1372 (1978) W.W. Price, E.M. Gulachenski, P. Kundur, F.J. Lange, G.C. Loehr, B.A. Roth, R.F. Silva, Testing of the modal dynamic equivalents technique. IEEE Trans. Power Apparatus Syst. PAS–97, 1366–1372 (1978)
23.
Zurück zum Zitat W.W. Price, B.A. Roth, B.A. Roth, Large-scale implementation of modal dynamic equivalents. IEEE Trans. Power Apparatus Syst. PAS–100, 3811–3817 (1981) W.W. Price, B.A. Roth, B.A. Roth, Large-scale implementation of modal dynamic equivalents. IEEE Trans. Power Apparatus Syst. PAS–100, 3811–3817 (1981)
24.
25.
Zurück zum Zitat I.J. Pérez-Arriaga, G.C. Verghese, F.C. Schweppe, Selective modal analysis with applications to electric power systems. part I: Heuristic introduction. part II: The dynamic stability problem. IEEE Trans. Power Apparatus Syst. PAS–101, 3117–3134 (1982)CrossRef I.J. Pérez-Arriaga, G.C. Verghese, F.C. Schweppe, Selective modal analysis with applications to electric power systems. part I: Heuristic introduction. part II: The dynamic stability problem. IEEE Trans. Power Apparatus Syst. PAS–101, 3117–3134 (1982)CrossRef
26.
Zurück zum Zitat F.L. Pagola, L. Rouco, I.J. Pérez-Arriaga, Analysis and control of small signal stability in electric power systems by selective modal analysis, in Eigenanalysis and Frequency Domain Methods for System Dynamic Performance. (IEEE Publication 90TH0292-3-PWR, 1990) , pp. 77–96 F.L. Pagola, L. Rouco, I.J. Pérez-Arriaga, Analysis and control of small signal stability in electric power systems by selective modal analysis, in Eigenanalysis and Frequency Domain Methods for System Dynamic Performance. (IEEE Publication 90TH0292-3-PWR, 1990) , pp. 77–96
27.
Zurück zum Zitat B.C. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Autom. Control AC–26, 17–32 (1981)CrossRef B.C. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Autom. Control AC–26, 17–32 (1981)CrossRef
28.
Zurück zum Zitat K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their \(L^\infty \) norms. International Journal of Control 39, 1115–1193 (1984) K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their \(L^\infty \) norms. International Journal of Control 39, 1115–1193 (1984)
29.
Zurück zum Zitat P. Benner, V. Mehrmann, D.C. Sorensen, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Sciences and Engineering, vol. 45 (Springer, Berlin, 2005)CrossRef P. Benner, V. Mehrmann, D.C. Sorensen, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Sciences and Engineering, vol. 45 (Springer, Berlin, 2005)CrossRef
30.
Zurück zum Zitat A.C. Antoulas, Approximation of Large-Scale Dynamical Systems (SIAM, Philadelphia, 2005)MATHCrossRef A.C. Antoulas, Approximation of Large-Scale Dynamical Systems (SIAM, Philadelphia, 2005)MATHCrossRef
31.
Zurück zum Zitat J.R. Winkelman, J.H. Chow, B.C. Bowler, B. Avramovic, P.V. Kokotović, An analysis of interarea dynamics of multi-machine systems. IEEE Trans. Power Apparatus Syst. PAS–100, 754–763 (1981) J.R. Winkelman, J.H. Chow, B.C. Bowler, B. Avramovic, P.V. Kokotović, An analysis of interarea dynamics of multi-machine systems. IEEE Trans. Power Apparatus Syst. PAS–100, 754–763 (1981)
32.
Zurück zum Zitat S. Haykin, Neural Networks and Learning Machines, 3rd edn. (Prentice Hall, Englewood Cliffs NJ, 2008) S. Haykin, Neural Networks and Learning Machines, 3rd edn. (Prentice Hall, Englewood Cliffs NJ, 2008)
33.
Zurück zum Zitat A.G. Phadke, J.S. Thorp, Synchronized Phasor Measurements and their Applications (Springer, New York, 2008)MATHCrossRef A.G. Phadke, J.S. Thorp, Synchronized Phasor Measurements and their Applications (Springer, New York, 2008)MATHCrossRef
34.
Zurück zum Zitat D.J. Trudnowski, Estimating electromechanical mode shape from synchrophasor measurements. IEEE Trans. Power Syst. 23(3), 1188–1195 (2008)CrossRef D.J. Trudnowski, Estimating electromechanical mode shape from synchrophasor measurements. IEEE Trans. Power Syst. 23(3), 1188–1195 (2008)CrossRef
35.
Zurück zum Zitat J.H. Chow, A. Chakrabortty, L. Vanfretti, M. Arcak, Estimation of radial power system transfer path dynamic parameters using synchronized phasor data. IEEE Trans. Power Syst. 23(2), 564–571 (May 2008)CrossRef J.H. Chow, A. Chakrabortty, L. Vanfretti, M. Arcak, Estimation of radial power system transfer path dynamic parameters using synchronized phasor data. IEEE Trans. Power Syst. 23(2), 564–571 (May 2008)CrossRef
36.
Zurück zum Zitat A. Murdoch, G. Boukarim, Performance Criteria and Tuning Techniques, Chapter 3 in IEEE Tutorial Course - Power System Stabilization via Excitation Control (Tampa, Florida, 2007) A. Murdoch, G. Boukarim, Performance Criteria and Tuning Techniques, Chapter 3 in IEEE Tutorial Course - Power System Stabilization via Excitation Control (Tampa, Florida, 2007)
37.
Zurück zum Zitat E.V. Larsen, J.H. Chow, SVC control design concepts for system dynamic performance, in IEEE Power Engineering Society Publication 87TH0187-5-PWR Application of Static Var Systems for System Dynamic Performance, 1987 E.V. Larsen, J.H. Chow, SVC control design concepts for system dynamic performance, in IEEE Power Engineering Society Publication 87TH0187-5-PWR Application of Static Var Systems for System Dynamic Performance, 1987
38.
Zurück zum Zitat E.V. Larsen, J.J. Sanchez-Gasca, J.H. Chow, Concepts for design of FACTS controllers to damp power swings. IEEE Trans. Power Syst. 10, 948–956 (1995)CrossRef E.V. Larsen, J.J. Sanchez-Gasca, J.H. Chow, Concepts for design of FACTS controllers to damp power swings. IEEE Trans. Power Syst. 10, 948–956 (1995)CrossRef
39.
Zurück zum Zitat C. Gama, L. Änguist, G. Ingeström, M. Noroozian, Commissioning and operative experience of TCSC for damping power oscillation in the Brazilian north-south interconnection. Paper 14–104, CIGRE Session 2000 C. Gama, L. Änguist, G. Ingeström, M. Noroozian, Commissioning and operative experience of TCSC for damping power oscillation in the Brazilian north-south interconnection. Paper 14–104, CIGRE Session 2000
40.
Zurück zum Zitat V. Centeno, A.G. Phadke, A. Edris, J. Benton, M. Gaugi, G. Michel, An adaptive out-of-step relay. IEEE Trans Power Syst. 26, 334–343 (1997) V. Centeno, A.G. Phadke, A. Edris, J. Benton, M. Gaugi, G. Michel, An adaptive out-of-step relay. IEEE Trans Power Syst. 26, 334–343 (1997)
41.
Zurück zum Zitat H. You, V. Vittal, X. Wang, Slow cherency-based islanding. IEEE Trans. Power Syst. 19, 483–491 (2004) H. You, V. Vittal, X. Wang, Slow cherency-based islanding. IEEE Trans. Power Syst. 19, 483–491 (2004)
42.
Zurück zum Zitat G. Xu, V. Vittal, A. Anatoliy, J.E. Thalman, Controlled islanding demonstrations in WECC system. IEEE Trans. Power Deliv. 12, 61–71 (2011) G. Xu, V. Vittal, A. Anatoliy, J.E. Thalman, Controlled islanding demonstrations in WECC system. IEEE Trans. Power Deliv. 12, 61–71 (2011)
43.
Zurück zum Zitat A.-A. Fouad, V. Vittal, Power System Transient Stability Analysis using the Transient Energy Function Method (Prentice-Hall, Englewood Cliffs NJ, 1992) A.-A. Fouad, V. Vittal, Power System Transient Stability Analysis using the Transient Energy Function Method (Prentice-Hall, Englewood Cliffs NJ, 1992)
44.
Zurück zum Zitat P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1994) P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1994)
45.
Zurück zum Zitat L. Vanfretti, Phasor measurement based state estimation of electric power systems and linearized analysis of power system network oscillations, PhD thesis, Rensselaer Polytechnic Institute, 2009 L. Vanfretti, Phasor measurement based state estimation of electric power systems and linearized analysis of power system network oscillations, PhD thesis, Rensselaer Polytechnic Institute, 2009
Metadaten
Titel
Introduction
verfasst von
Joe H. Chow
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-1803-0_1