Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

1. Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, I give an introduction into the research fields of nanostructured optical materials and provide the key research questions around which this book is structured. These research questions are:
1)
Can nanocomposites be used as bulk optical materials? And, if so, how must they be designed? In addition, what are the fundamental limits of the concept of an effective refractive index?
 
2)
What is the potential of nanocomposites as optical materials? More specifically, what properties can be achieved? And are effective medium theories accurate tools that can predict their properties?
 
3)
Do nanocomposites allow for the design of highly efficient diffractive optical elements for broadband applications? And, if so, are such devices suitable for high-numerical-aperture imaging systems? In addition, can general concepts for how broadband diffractive optical elements must be designed be developed?
 
4)
Can nanocomposites provide significant benefits for optical systems that outweigh their increased complexity? And, if so, what are potential applications?
 

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Schaming, H. Remita, Nanotechnology: from the ancient time to nowadays. Found. Chem. 17(3), 187–205 (2015)CrossRef D. Schaming, H. Remita, Nanotechnology: from the ancient time to nowadays. Found. Chem. 17(3), 187–205 (2015)CrossRef
2.
go back to reference R.H. Brill, N.D. Cahill, A red opaque glass from sardis and some thoughts on red opaques in general. J. Glass Stud. 30, 16–27 (1988) R.H. Brill, N.D. Cahill, A red opaque glass from sardis and some thoughts on red opaques in general. J. Glass Stud. 30, 16–27 (1988)
3.
go back to reference R.J. Gettens, Maya blue: an unsolved problem in ancient pigments. Am. Antiquity 27(4), 557–564 (2017) R.J. Gettens, Maya blue: an unsolved problem in ancient pigments. Am. Antiquity 27(4), 557–564 (2017)
4.
go back to reference M.Sánchez del Río, A. Doménech, M.T. Doménech-Carbó, M.L. Vázquez de Agredos Pascual, M. Suárez, E. García-Romero, Chapter 18—the maya blue pigment, in Developments in Clay Science, vol. 3, ed by E. Galàn, A. Singer (Elsevier, 2011), pp. 453–481 M.Sánchez del Río, A. Doménech, M.T. Doménech-Carbó, M.L. Vázquez de Agredos Pascual, M. Suárez, E. García-Romero, Chapter 18—the maya blue pigment, in Developments in Clay Science, vol. 3, ed by E. Galàn, A. Singer (Elsevier, 2011), pp. 453–481
5.
go back to reference G. Chiari, R. Giustetto, J. Druzik, E. Doehne, G. Ricchiardi, Pre-columbian nanotechnology: reconciling the mysteries of the maya blue pigment. Appl. Phys. A 90(1), 3–7 (2007)CrossRef G. Chiari, R. Giustetto, J. Druzik, E. Doehne, G. Ricchiardi, Pre-columbian nanotechnology: reconciling the mysteries of the maya blue pigment. Appl. Phys. A 90(1), 3–7 (2007)CrossRef
6.
go back to reference M. Jose-Yacaman, L. Rendon, J. Arenas, M.C. Serra Puche, Maya blue paint: an ancient nanostructured material. Science 273(5272), 223–225 (1996) M. Jose-Yacaman, L. Rendon, J. Arenas, M.C. Serra Puche, Maya blue paint: an ancient nanostructured material. Science 273(5272), 223–225 (1996)
7.
go back to reference I. Freestone, N. Meeks, M. Sax, C. Higgitt, The lycurgus cup—a roman nanotechnology. Gold Bull. 40(4), 270–277 (2007) I. Freestone, N. Meeks, M. Sax, C. Higgitt, The lycurgus cup—a roman nanotechnology. Gold Bull. 40(4), 270–277 (2007)
8.
go back to reference J. Delgado, M. Vilarigues, A. Ruivo, V. Corregidor, R.C.d. Silva, L.C. Alves. Characterisation of medieval yellow silver stained glass from Convento de Cristo in Tomar. Portugal. Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 269(20), 2383–2388 (2011) J. Delgado, M. Vilarigues, A. Ruivo, V. Corregidor, R.C.d. Silva, L.C. Alves. Characterisation of medieval yellow silver stained glass from Convento de Cristo in Tomar. Portugal. Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 269(20), 2383–2388 (2011)
9.
go back to reference J.H. Koo, Fundamentals, Properties, and Applications of Polymer Nanocomposites (Cambridge University Press, Cambridge, 2017) J.H. Koo, Fundamentals, Properties, and Applications of Polymer Nanocomposites (Cambridge University Press, Cambridge, 2017)
10.
go back to reference J. Parameswaranpillai, N. Hameed, T. Kurian, Y. Yu, Nanocomposite Materials: Synthesis, Properties and Applications (CRC Press, Boca Raton, 2016) J. Parameswaranpillai, N. Hameed, T. Kurian, Y. Yu, Nanocomposite Materials: Synthesis, Properties and Applications (CRC Press, Boca Raton, 2016)
11.
go back to reference S. Gong, H. Ni, L. Jiang, Q. Cheng, Learning from nature: constructing high performance graphene-based nanocomposites. Mater. Today 20(4), 210–219 (2017) S. Gong, H. Ni, L. Jiang, Q. Cheng, Learning from nature: constructing high performance graphene-based nanocomposites. Mater. Today 20(4), 210–219 (2017)
12.
go back to reference V.K. Thakur, M.R. Kessler, Self-healing polymer nanocomposite materials: a review. Polymer 69, 369–383 (2015) V.K. Thakur, M.R. Kessler, Self-healing polymer nanocomposite materials: a review. Polymer 69, 369–383 (2015)
13.
go back to reference D.V. Szabó, T. Hanemann. Polymer nanocomposites for optical applications, in Advances in Polymer Nanocomposites, ed. by F. Gao (Woodhead Publishing, 2012), pp. 567–604 D.V. Szabó, T. Hanemann. Polymer nanocomposites for optical applications, in Advances in Polymer Nanocomposites, ed. by F. Gao (Woodhead Publishing, 2012), pp. 567–604
14.
go back to reference P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley, New York, 2006) P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley, New York, 2006)
15.
go back to reference N. Grossiord, J. Loos, O. Regev, C.E. Koning, Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 18(5), 1089–1099 (2006) N. Grossiord, J. Loos, O. Regev, C.E. Koning, Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 18(5), 1089–1099 (2006)
16.
go back to reference L.L. Beecroft, C.K. Ober, Nanocomposite materials for optical applications. Chem. Mater. 9(6), 1302–1317 (1997) L.L. Beecroft, C.K. Ober, Nanocomposite materials for optical applications. Chem. Mater. 9(6), 1302–1317 (1997)
17.
go back to reference J. Peng, Q. Cheng, High-performance nanocomposites inspired by nature. Adv. Mater. 29(45) (2017) J. Peng, Q. Cheng, High-performance nanocomposites inspired by nature. Adv. Mater. 29(45) (2017)
18.
go back to reference O.A. Tertuliano, J.R. Greer, The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 15(11), 1195–1202 (2016)PubMedCrossRef O.A. Tertuliano, J.R. Greer, The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 15(11), 1195–1202 (2016)PubMedCrossRef
19.
go back to reference U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015)PubMedCrossRef U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015)PubMedCrossRef
20.
go back to reference M.A.S. Azizi Samir, F. Alloin, A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2), 612–626 (2005) M.A.S. Azizi Samir, F. Alloin, A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2), 612–626 (2005)
21.
go back to reference C.B. Thompson, S. Chatterjee, L.T.J. Korley, Gradient supramolecular interactions and tunable mechanics in polychaete jaw inspired semi-interpenetrating networks. Eur. Polymer J. 116, 201–209 (2019)CrossRef C.B. Thompson, S. Chatterjee, L.T.J. Korley, Gradient supramolecular interactions and tunable mechanics in polychaete jaw inspired semi-interpenetrating networks. Eur. Polymer J. 116, 201–209 (2019)CrossRef
22.
go back to reference M.R. Rogel, H. Qiu, G.A. Ameer, The role of nanocomposites in bone regeneration. J. Mater. Chem. 18(36), 4233–4241 (2008)CrossRef M.R. Rogel, H. Qiu, G.A. Ameer, The role of nanocomposites in bone regeneration. J. Mater. Chem. 18(36), 4233–4241 (2008)CrossRef
23.
go back to reference M.R. Shirdar, N. Farajpour, R. Shahbazian-Yassar, T. Shokuhfar, Nanocomposite materials in orthopedic applications. Frontiers Chem. Sci. Eng. 13(1), 1–13 (2019)CrossRef M.R. Shirdar, N. Farajpour, R. Shahbazian-Yassar, T. Shokuhfar, Nanocomposite materials in orthopedic applications. Frontiers Chem. Sci. Eng. 13(1), 1–13 (2019)CrossRef
24.
go back to reference N. Dhas, K. Parekh, A. Pandey, R. Kudarha, S. Mutalik, T. Mehta, Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J. Controlled Release 308, 130–161 (2019)CrossRef N. Dhas, K. Parekh, A. Pandey, R. Kudarha, S. Mutalik, T. Mehta, Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J. Controlled Release 308, 130–161 (2019)CrossRef
25.
go back to reference R.J.B. Pinto, M. Nasirpour, J. Carrola, H. Oliveira, C.S.R. Freire, I.F. Duarte, A.M. Grumezescu, Chapter 9—-Antimicrobial properties and therapeutic applications of silver nanoparticles and nanocomposites, in Antimicrobial Nanoarchitectonics (Elsevier, 2017), pp. 223–259 R.J.B. Pinto, M. Nasirpour, J. Carrola, H. Oliveira, C.S.R. Freire, I.F. Duarte, A.M. Grumezescu, Chapter 9—-Antimicrobial properties and therapeutic applications of silver nanoparticles and nanocomposites, in Antimicrobial Nanoarchitectonics (Elsevier, 2017), pp. 223–259
26.
go back to reference P.P.D. Kondiah, Y.E. Choonara, P.J. Kondiah, T. Marimuthu, P. Kumar, L.C. du Toit, G. Modi, V. Pillay, Inamuddin, A.M. Asiri, A. Mohammad, 17—Nanocomposites for therapeutic application in multiple sclerosis, in Applications of Nanocomposite Materials in Drug Delivery (Woodhead Publishing, 2018), pp. 391–408 P.P.D. Kondiah, Y.E. Choonara, P.J. Kondiah, T. Marimuthu, P. Kumar, L.C. du Toit, G. Modi, V. Pillay, Inamuddin, A.M. Asiri, A. Mohammad, 17—Nanocomposites for therapeutic application in multiple sclerosis, in Applications of Nanocomposite Materials in Drug Delivery (Woodhead Publishing, 2018), pp. 391–408
27.
go back to reference G. Sandri, M. Bonferoni, S. Rossi, F. Ferrari, C. Aguzzi, C. Viseras, C. Caramella, 19—Clay minerals for tissue regeneration, repair, and engineering, in Wound Healing Biomaterials, ed. by M.S. Ågren (Woodhead Publishing, 2016), pp. 385–402 G. Sandri, M. Bonferoni, S. Rossi, F. Ferrari, C. Aguzzi, C. Viseras, C. Caramella, 19—Clay minerals for tissue regeneration, repair, and engineering, in Wound Healing Biomaterials, ed. by M.S. Ågren (Woodhead Publishing, 2016), pp. 385–402
28.
go back to reference J.-W. Rhim, H.-M. Park, C.-S. Ha, Bio-nanocomposites for food packaging applications. Progress Polymer Sci. 38(10–11), 1629–1652 (2013)CrossRef J.-W. Rhim, H.-M. Park, C.-S. Ha, Bio-nanocomposites for food packaging applications. Progress Polymer Sci. 38(10–11), 1629–1652 (2013)CrossRef
29.
go back to reference Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U. S. A. 111(47), 16676–81 (2014) Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U. S. A. 111(47), 16676–81 (2014)
30.
go back to reference S. Ansari, E.P. Giannelis, Functionalized graphene sheet-Poly(vinylidene fluoride) conductive nanocomposites. J. Polymer Sci. Part B: Polymer Phys. 47(9), 888–897 (2009)CrossRef S. Ansari, E.P. Giannelis, Functionalized graphene sheet-Poly(vinylidene fluoride) conductive nanocomposites. J. Polymer Sci. Part B: Polymer Phys. 47(9), 888–897 (2009)CrossRef
31.
go back to reference Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95(2), 525–532 (1991)CrossRef Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95(2), 525–532 (1991)CrossRef
32.
go back to reference T. Tanaka, Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 12(5), 914–928 (2005)CrossRef T. Tanaka, Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 12(5), 914–928 (2005)CrossRef
33.
go back to reference K. Wang et al., Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun. 10(1), 3985 (2019) K. Wang et al., Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun. 10(1), 3985 (2019)
34.
go back to reference J. Musil, Hard and superhard nanocomposite coatings. Surface Coatings Technol. 125(1–3), 322–330 (2000)CrossRef J. Musil, Hard and superhard nanocomposite coatings. Surface Coatings Technol. 125(1–3), 322–330 (2000)CrossRef
35.
go back to reference Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H.U. Li, E. Iagodkine, A. Haque, L.-Q. Chen, T.N. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015)PubMedCrossRef Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H.U. Li, E. Iagodkine, A. Haque, L.-Q. Chen, T.N. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015)PubMedCrossRef
36.
go back to reference A.J. Crosby, J.-Y. Lee, polymer nanocomposites: the nano effect on mechanical properties. Polymer Rev. 47(2), 217–229 (2007) A.J. Crosby, J.-Y. Lee, polymer nanocomposites: the nano effect on mechanical properties. Polymer Rev. 47(2), 217–229 (2007)
37.
go back to reference G. Bogdanic, A. Kuzmić. Definitions of terms related to polymer blends, composites, and multiphase polymeric materials, VII.1. Kemija u Industriji 58 (2009) G. Bogdanic, A. Kuzmić. Definitions of terms related to polymer blends, composites, and multiphase polymeric materials, VII.1. Kemija u Industriji 58 (2009)
38.
go back to reference G. Garnweitner, L.M. Goldenberg, O.V. Sakhno, M. Antonietti, M. Niederberger, J. Stumpe, Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography. Small 3(9), 1626–1632 (2007) G. Garnweitner, L.M. Goldenberg, O.V. Sakhno, M. Antonietti, M. Niederberger, J. Stumpe, Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography. Small 3(9), 1626–1632 (2007)
39.
go back to reference A. Chatterjee, D. Chakravorty, Glass-metal nanocomposite synthesis by metal organic route. J. Phys. D: Appl. Phys. 22(9), 1386–1392 (1989)CrossRef A. Chatterjee, D. Chakravorty, Glass-metal nanocomposite synthesis by metal organic route. J. Phys. D: Appl. Phys. 22(9), 1386–1392 (1989)CrossRef
40.
go back to reference S. Kubo, A. Diaz, Y. Tang, T.S. Mayer, I.C. Khoo, T.E. Mallouk, Tunability of the refractive index of gold nanoparticle dispersions. Nano Lett. 7(11), 3418–3423 (2007)PubMedCrossRef S. Kubo, A. Diaz, Y. Tang, T.S. Mayer, I.C. Khoo, T.E. Mallouk, Tunability of the refractive index of gold nanoparticle dispersions. Nano Lett. 7(11), 3418–3423 (2007)PubMedCrossRef
41.
go back to reference J.-G. Liu, M. Ueda, High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 19(47), 8907–8919 (2009)CrossRef J.-G. Liu, M. Ueda, High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 19(47), 8907–8919 (2009)CrossRef
42.
go back to reference H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surface Sci. 258(22), 8564–8569 (2012)CrossRef H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surface Sci. 258(22), 8564–8569 (2012)CrossRef
43.
go back to reference C. Lü, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, J. Shen, Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J. Mater. Chem. 13(9), 2189–2195 (2003)CrossRef C. Lü, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, J. Shen, Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J. Mater. Chem. 13(9), 2189–2195 (2003)CrossRef
44.
go back to reference N. Nakashima, High refractive index glass compositions. Patent US4082427 (1978) N. Nakashima, High refractive index glass compositions. Patent US4082427 (1978)
45.
go back to reference Y. Tanaka, K. Hosokawa, K. Takeuchi, Optical composite material and optical element. Patent US8637588 (2014) Y. Tanaka, K. Hosokawa, K. Takeuchi, Optical composite material and optical element. Patent US8637588 (2014)
46.
go back to reference H. Ukuda, Optical material, and, optical element, optical system and laminated diffractive optical element using it. Patent US20050110830 (2005) H. Ukuda, Optical material, and, optical element, optical system and laminated diffractive optical element using it. Patent US20050110830 (2005)
47.
go back to reference R. Schnell, W. Beier, M. Winkler-Trudewig, Transparenter duroplastischer Komposit aus organischer Matrix mit nanoskaligen Glaspartikeln, Verfahren zur Herstellung desselben und dessen Verwendung. Patent DE 10 2007 017 651 (2007) R. Schnell, W. Beier, M. Winkler-Trudewig, Transparenter duroplastischer Komposit aus organischer Matrix mit nanoskaligen Glaspartikeln, Verfahren zur Herstellung desselben und dessen Verwendung. Patent DE 10 2007 017 651 (2007)
48.
go back to reference S. Monickam, D. Peters, G. Cooper, Z. Chen. Nanocomposite formulations for optical applications. Patent US20180223107 (2018) S. Monickam, D. Peters, G. Cooper, Z. Chen. Nanocomposite formulations for optical applications. Patent US20180223107 (2018)
49.
go back to reference A. Garito, Y.-L. Hsiao, R. Gao, J. Zhu, B. Thomas, A. Panackal, J. Sharma, R. Gao. Optical polymer nanocomposites. Patent US20030175004 (2003) A. Garito, Y.-L. Hsiao, R. Gao, J. Zhu, B. Thomas, A. Panackal, J. Sharma, R. Gao. Optical polymer nanocomposites. Patent US20030175004 (2003)
50.
go back to reference M. Feuillade, G. Cantagrel. Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article. Patent US20150203710 (2015) M. Feuillade, G. Cantagrel. Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article. Patent US20150203710 (2015)
51.
go back to reference G. Cooper, W. Xu, Z. Chen, High refractive index nanocomposite layer. Patent US10144842. 2018 G. Cooper, W. Xu, Z. Chen, High refractive index nanocomposite layer. Patent US10144842. 2018
52.
go back to reference P.T. Chung, C.T. Yang, S.H. Wang, C.W. Chen, A.S. Chiang, C.-Y. Liu, ZrO2/epoxy nanocomposite for LED encapsulation. Mater. Chem. Phys. 136(2–3), 868–876 (2012)CrossRef P.T. Chung, C.T. Yang, S.H. Wang, C.W. Chen, A.S. Chiang, C.-Y. Liu, ZrO2/epoxy nanocomposite for LED encapsulation. Mater. Chem. Phys. 136(2–3), 868–876 (2012)CrossRef
53.
go back to reference P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef
54.
go back to reference S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010) S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010)
55.
go back to reference C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–2901 (2009)CrossRef C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–2901 (2009)CrossRef
56.
go back to reference S. Lee, H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, U. Paik, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J. Mater. Chem. 18(15), 1751–1755 (2008)CrossRef S. Lee, H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, U. Paik, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J. Mater. Chem. 18(15), 1751–1755 (2008)CrossRef
57.
go back to reference J.L.H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S.L.-C. Hsu, T.-L. Li, Transparent high refractive index nanocomposite thin films. Mater. Lett. 61(14–15), 2908–2910 (2007)CrossRef J.L.H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S.L.-C. Hsu, T.-L. Li, Transparent high refractive index nanocomposite thin films. Mater. Lett. 61(14–15), 2908–2910 (2007)CrossRef
58.
go back to reference H.K. Schmidt, Sol-gel nanocomposites as functional optical materials, in Sol-Gel Optics II, ed. by J.D. Mackenzie, vol. 1758 (International Society for Optics and Photonics. SPIE, 1992), pp. 396–402 H.K. Schmidt, Sol-gel nanocomposites as functional optical materials, in Sol-Gel Optics II, ed. by J.D. Mackenzie, vol. 1758 (International Society for Optics and Photonics. SPIE, 1992), pp. 396–402
59.
go back to reference C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003)CrossRef C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003)CrossRef
60.
go back to reference R.J. Nussbaumer, W.R. Caseri, P. Smith, T. Tervoort, Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromolecular Mater. Eng. 288(1), 44–49 (2003) R.J. Nussbaumer, W.R. Caseri, P. Smith, T. Tervoort, Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromolecular Mater. Eng. 288(1), 44–49 (2003)
61.
go back to reference A. Biswas, O.C. Aktas, J. Kanzow, U. Saeed, T. Strunskus, V. Zaporojtchenko, F. Faupel, Polymer-metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition. Mater. Lett. 58(9), 1530–1534 (2004)CrossRef A. Biswas, O.C. Aktas, J. Kanzow, U. Saeed, T. Strunskus, V. Zaporojtchenko, F. Faupel, Polymer-metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition. Mater. Lett. 58(9), 1530–1534 (2004)CrossRef
62.
go back to reference C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17(9), 2448–2454 (2005)CrossRef C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17(9), 2448–2454 (2005)CrossRef
63.
go back to reference B. Karthikeyan, M. Anija, C.S. Suchand Sandeep, T.M. Muhammad Nadeer, R. Philip, Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature. Opt. Commun. 281(10), 2933–2937 (2008) B. Karthikeyan, M. Anija, C.S. Suchand Sandeep, T.M. Muhammad Nadeer, R. Philip, Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature. Opt. Commun. 281(10), 2933–2937 (2008)
64.
go back to reference B. Karthikeyan, M. Anija, R. Philip, In situ synthesis and nonlinear optical properties of Au:Ag nanocomposite polymer films. Appl. Phys. Lett. 88(5), 053104 (2006) B. Karthikeyan, M. Anija, R. Philip, In situ synthesis and nonlinear optical properties of Au:Ag nanocomposite polymer films. Appl. Phys. Lett. 88(5), 053104 (2006)
65.
go back to reference A.A. Scalisi, G. Compagnini, L. D’Urso, O. Puglisi, Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration. Appl. Surface Sci. 226(1–3), 237–241 (2004)CrossRef A.A. Scalisi, G. Compagnini, L. D’Urso, O. Puglisi, Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration. Appl. Surface Sci. 226(1–3), 237–241 (2004)CrossRef
66.
go back to reference R.W. Boyd, R.J. Gehr, G.L. Fischer, J.E. Sipe, Nonlinear optical properties of nanocomposite materials. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 5(5), 505–512 (1996)CrossRef R.W. Boyd, R.J. Gehr, G.L. Fischer, J.E. Sipe, Nonlinear optical properties of nanocomposite materials. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 5(5), 505–512 (1996)CrossRef
67.
go back to reference X. Zeng, D. Bergman, P. Hui, D. Stroud, Effective-medium theory for weakly nonlinear composites. Phys. Rev. B 38(15), 10970 (1988) X. Zeng, D. Bergman, P. Hui, D. Stroud, Effective-medium theory for weakly nonlinear composites. Phys. Rev. B 38(15), 10970 (1988)
68.
go back to reference G. Albrecht, M. Hentschel, S. Kaiser, H. Giessen, Hybrid Organic-Plasmonic Nanoantennas with Enhanced Third-Harmonic Generation. ACS Omega 2(6), 2577–2582 (2017)PubMedPubMedCentralCrossRef G. Albrecht, M. Hentschel, S. Kaiser, H. Giessen, Hybrid Organic-Plasmonic Nanoantennas with Enhanced Third-Harmonic Generation. ACS Omega 2(6), 2577–2582 (2017)PubMedPubMedCentralCrossRef
69.
go back to reference P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49(16), D157–D176 (2010) P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49(16), D157–D176 (2010)
70.
go back to reference Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in White Paper (2014) Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in White Paper (2014)
71.
go back to reference D. Russel, Stabell, Scaling-up Pixelligent nanocrystal dispersions, in White Paper (2016) D. Russel, Stabell, Scaling-up Pixelligent nanocrystal dispersions, in White Paper (2016)
72.
go back to reference Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014) Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014)
73.
go back to reference C.F. Bohren, Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmospheric Sci. 43(5), 468–475 (1986)CrossRef C.F. Bohren, Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmospheric Sci. 43(5), 468–475 (1986)CrossRef
74.
go back to reference C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008) C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008)
75.
go back to reference L.L. Foldy, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67(3–4), 107–119 (1945) L.L. Foldy, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67(3–4), 107–119 (1945)
76.
go back to reference M. Lax, Multiple scattering of waves. Rev. Modern Phys. 23(4), 287–310 (1951)CrossRef M. Lax, Multiple scattering of waves. Rev. Modern Phys. 23(4), 287–310 (1951)CrossRef
77.
go back to reference M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef
78.
go back to reference M.I. Mishchenko, L.D. Travis, T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109(1), 16–21 (1994)CrossRef M.I. Mishchenko, L.D. Travis, T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109(1), 16–21 (1994)CrossRef
79.
go back to reference M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002) M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002)
80.
go back to reference A. Macke, M.I. Mishchenko, K. Muinonen, B.E. Carlson, Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method. Opt. Lett. 20(19), 1934–1936 (1995)PubMedCrossRef A. Macke, M.I. Mishchenko, K. Muinonen, B.E. Carlson, Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method. Opt. Lett. 20(19), 1934–1936 (1995)PubMedCrossRef
81.
go back to reference Z. Cui, Y. Han, Q. Xu, Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams. J. Opt. Soc. Am. A 28(11), 2200–2208 (2011)CrossRef Z. Cui, Y. Han, Q. Xu, Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams. J. Opt. Soc. Am. A 28(11), 2200–2208 (2011)CrossRef
82.
go back to reference L. Pattelli, A. Egel, U. Lemmer, D.S. Wiersma, Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5(9), 1037–1045 (2018)CrossRef L. Pattelli, A. Egel, U. Lemmer, D.S. Wiersma, Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5(9), 1037–1045 (2018)CrossRef
83.
go back to reference V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)CrossRef V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)CrossRef
84.
go back to reference P. Mallet, C.-A. Guérin, A. Sentenac, Maxwell-Garnett mixing rule in the presence of multiple scattering: derivation and accuracy. Phys. Rev. B 72(1), 014205 (2005) P. Mallet, C.-A. Guérin, A. Sentenac, Maxwell-Garnett mixing rule in the presence of multiple scattering: derivation and accuracy. Phys. Rev. B 72(1), 014205 (2005)
85.
go back to reference W.T. Doyle, Optical properties of a suspension of metal spheres. Phys. Rev. B 39(14), 9852 (1989) W.T. Doyle, Optical properties of a suspension of metal spheres. Phys. Rev. B 39(14), 9852 (1989)
86.
go back to reference R. Ruppin, Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182(4), 273–279 (2000)CrossRef R. Ruppin, Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182(4), 273–279 (2000)CrossRef
87.
go back to reference T.C. Choy, Effective Medium Theory: Principles and Applications, vol. 165 (Oxford University Press, Oxford, 2015) T.C. Choy, Effective Medium Theory: Principles and Applications, vol. 165 (Oxford University Press, Oxford, 2015)
88.
go back to reference A. Andryieuski, S. Ha, A.A. Sukhorukov, Y.S. Kivshar, A.V. Lavrinenko, Bloch-mode analysis for retrieving effective parameters of metamaterials. Phys. Rev. B 86(3) (2012) A. Andryieuski, S. Ha, A.A. Sukhorukov, Y.S. Kivshar, A.V. Lavrinenko, Bloch-mode analysis for retrieving effective parameters of metamaterials. Phys. Rev. B 86(3) (2012)
89.
go back to reference D. Aspnes, Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys. 50(8), 704–709 (1982)CrossRef D. Aspnes, Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys. 50(8), 704–709 (1982)CrossRef
90.
go back to reference P. Chýlek, V. Srivastava, R.G. Pinnick, R. Wang, Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations. Appl. Opt. 27(12), 2396–2404 (1988)CrossRef P. Chýlek, V. Srivastava, R.G. Pinnick, R. Wang, Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations. Appl. Opt. 27(12), 2396–2404 (1988)CrossRef
91.
go back to reference A. Malasi, R. Kalyanaraman, H. Garcia, From Mie to Fresnel through effective medium approximation with multipole contributions. J. Opt. 16(6), 065001 (2014) A. Malasi, R. Kalyanaraman, H. Garcia, From Mie to Fresnel through effective medium approximation with multipole contributions. J. Opt. 16(6), 065001 (2014)
92.
go back to reference K. Mnasri, A. Khrabustovskyi, M. Plum, C. Rockstuhl, Retrieving effective material parameters of metamaterials characterized by nonlocal constitutive relations. Phys. Rev B 99(3) (2019) K. Mnasri, A. Khrabustovskyi, M. Plum, C. Rockstuhl, Retrieving effective material parameters of metamaterials characterized by nonlocal constitutive relations. Phys. Rev B 99(3) (2019)
93.
go back to reference G.A. Niklasson, C. Granqvist, O. Hunderi, Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt. 20(1), 26–30 (1981)PubMedCrossRef G.A. Niklasson, C. Granqvist, O. Hunderi, Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt. 20(1), 26–30 (1981)PubMedCrossRef
94.
go back to reference D. Ruan, L. Zhu, X. Jing, Y. Tian, L. Wang, S. Jin, Validity of scalar diffraction theory and effective medium theory for analysis of a blazed grating microstructure at oblique incidence. Appl. Opt. 53(11), 2357–65 (2014)PubMedCrossRef D. Ruan, L. Zhu, X. Jing, Y. Tian, L. Wang, S. Jin, Validity of scalar diffraction theory and effective medium theory for analysis of a blazed grating microstructure at oblique incidence. Appl. Opt. 53(11), 2357–65 (2014)PubMedCrossRef
95.
go back to reference B.T. Schwartz, R. Piestun, Dynamic properties of photonic crystals and their effective refractive index. J. Opt. Soc. Am. B 22(9), 2018–2026 (2005)CrossRef B.T. Schwartz, R. Piestun, Dynamic properties of photonic crystals and their effective refractive index. J. Opt. Soc. Am. B 22(9), 2018–2026 (2005)CrossRef
96.
go back to reference D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65(19) (2002) D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65(19) (2002)
97.
go back to reference G. Smith, Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure. Opt. Commun. 71(5), 279–284 (1989)CrossRef G. Smith, Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure. Opt. Commun. 71(5), 279–284 (1989)CrossRef
98.
go back to reference I. Skryabin, A. Radchik, P. Moses, G. Smith, The consistent application of Maxwell-Garnett effective medium theory to anisotropic composites. Appl. Phys. Lett. 70(17), 2221–2223 (1997)CrossRef I. Skryabin, A. Radchik, P. Moses, G. Smith, The consistent application of Maxwell-Garnett effective medium theory to anisotropic composites. Appl. Phys. Lett. 70(17), 2221–2223 (1997)CrossRef
99.
go back to reference K. Mnasri, F.Z. Goffi, M. Plum, C. Rockstuhl, Homogenization of wire media with a general purpose nonlocal constitutive relation. J. Opt. Soc. Am. B 36(8), F99 (2019) K. Mnasri, F.Z. Goffi, M. Plum, C. Rockstuhl, Homogenization of wire media with a general purpose nonlocal constitutive relation. J. Opt. Soc. Am. B 36(8), F99 (2019)
100.
go back to reference M. Notomi, Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62(16), 10696 (2000) M. Notomi, Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62(16), 10696 (2000)
101.
go back to reference M.V. Rybin, D.S. Filonov, K.B. Samusev, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commun. 6, 10102 (2015) M.V. Rybin, D.S. Filonov, K.B. Samusev, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commun. 6, 10102 (2015)
102.
go back to reference J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2011)CrossRef J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2011)CrossRef
103.
go back to reference P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, J. Valentine, Realization of an all-dielectric zero-index optical metamaterial. Nat. Photon. 7(10), 791 (2013) P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, J. Valentine, Realization of an all-dielectric zero-index optical metamaterial. Nat. Photon. 7(10), 791 (2013)
104.
go back to reference T. Paul, C. Menzel, W. Śmigaj, C. Rockstuhl, P. Lalanne, F. Lederer, Reflection and transmission of light at periodic layered metamaterial films. Phys. Rev. B 84(11) (2011) T. Paul, C. Menzel, W. Śmigaj, C. Rockstuhl, P. Lalanne, F. Lederer, Reflection and transmission of light at periodic layered metamaterial films. Phys. Rev. B 84(11) (2011)
105.
go back to reference J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch. “Multipole approach to metamaterials”. Phys. Rev. A 78(4), 043811 (2008) J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch. “Multipole approach to metamaterials”. Phys. Rev. A 78(4), 043811 (2008)
106.
go back to reference M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7, 543 (2008) M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7, 543 (2008)
107.
go back to reference C. Rockstuhl, C. Menzel, T. Paul, F. Lederer, Homogenization of metamaterials from a Bloch mode perspective, in 2012 International Conference on Electromagnetics in Advanced Applications (2012), pp. 178–181 C. Rockstuhl, C. Menzel, T. Paul, F. Lederer, Homogenization of metamaterials from a Bloch mode perspective, in 2012 International Conference on Electromagnetics in Advanced Applications (2012), pp. 178–181
108.
go back to reference C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T.P. Meyrath, H. Giessen, Transition from thin-film to bulk properties of metamaterials. Phys. Rev. B 77(3), 035126 (2008) C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T.P. Meyrath, H. Giessen, Transition from thin-film to bulk properties of metamaterials. Phys. Rev. B 77(3), 035126 (2008)
109.
go back to reference C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B 84(1–2), 219–227 (2006)CrossRef C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B 84(1–2), 219–227 (2006)CrossRef
110.
go back to reference J. Zhou, T. Koschny, M. Kafesaki, C.M. Soukoulis, Negative refractive index response of weakly and strongly coupled optical metamaterials. Phys. Rev B 80(3) (2009) J. Zhou, T. Koschny, M. Kafesaki, C.M. Soukoulis, Negative refractive index response of weakly and strongly coupled optical metamaterials. Phys. Rev B 80(3) (2009)
111.
go back to reference G. Shvets, I. Tsukerman, Plasmonics and Plasmonic Metamaterials: Analysis and Applications, vol. 4 (World Scientific, 2012) G. Shvets, I. Tsukerman, Plasmonics and Plasmonic Metamaterials: Analysis and Applications, vol. 4 (World Scientific, 2012)
112.
go back to reference S. Wang et al., A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018)PubMedCrossRef S. Wang et al., A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018)PubMedCrossRef
113.
go back to reference H. Liang, A. Martins, B.-H.V. Borges, J. Zhou, E.R. Martins, J. Li, T.F. Krauss, High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica 6(12), 1461–1470 (2019)CrossRef H. Liang, A. Martins, B.-H.V. Borges, J. Zhou, E.R. Martins, J. Li, T.F. Krauss, High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica 6(12), 1461–1470 (2019)CrossRef
114.
go back to reference M. Decker, I. Staude, Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18(10), 103001 (2016) M. Decker, I. Staude, Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18(10), 103001 (2016)
115.
go back to reference M. Decker, I. Staude, M. Falkner, J. Dominguez, D.N. Neshev, I. Brener, T. Pertsch, Y.S. Kivshar, High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3(6), 813–820 (2015)CrossRef M. Decker, I. Staude, M. Falkner, J. Dominguez, D.N. Neshev, I. Brener, T. Pertsch, Y.S. Kivshar, High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3(6), 813–820 (2015)CrossRef
116.
go back to reference S.J. Byrnes, A. Lenef, F. Aieta, F. Capasso, Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Exp. 24(5), 5110–5124 (2016)CrossRef S.J. Byrnes, A. Lenef, F. Aieta, F. Capasso, Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Exp. 24(5), 5110–5124 (2016)CrossRef
117.
go back to reference W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13(3), 220–226 (2018)PubMedCrossRef W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13(3), 220–226 (2018)PubMedCrossRef
118.
go back to reference W.T. Chen, A.Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso, A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10(1), 355 (2019) W.T. Chen, A.Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso, A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10(1), 355 (2019)
119.
go back to reference W.T. Chen, A.Y. Zhu, J. Sisler, Y.W. Huang, K.M.A. Yousef, E. Lee, C.W. Qiu, F. Capasso, Broadband achromatic metasurface-refractive optics. Nano Lett. 18(12), 7801–7808 (2018)PubMedCrossRef W.T. Chen, A.Y. Zhu, J. Sisler, Y.W. Huang, K.M.A. Yousef, E. Lee, C.W. Qiu, F. Capasso, Broadband achromatic metasurface-refractive optics. Nano Lett. 18(12), 7801–7808 (2018)PubMedCrossRef
120.
go back to reference M. Decker, W.T. Chen, T. Nobis, A.Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, J. Petschulat, Imaging performance of polarization-insensitive metalenses. ACS Photon. (2019) M. Decker, W.T. Chen, T. Nobis, A.Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, J. Petschulat, Imaging performance of polarization-insensitive metalenses. ACS Photon. (2019)
121.
go back to reference P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, R. Devlin, Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4(1), 139 (2017) P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, R. Devlin, Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4(1), 139 (2017)
122.
go back to reference B. Groever, W.T. Chen, F. Capasso, Meta-lens doublet in the visible region. Nano Lett. 17(8), 4902–4907 (2017)PubMedCrossRef B. Groever, W.T. Chen, F. Capasso, Meta-lens doublet in the visible region. Nano Lett. 17(8), 4902–4907 (2017)PubMedCrossRef
123.
go back to reference M. Khorasaninejad, F. Capasso, Metalenses: Versatile multifunctional photonic components. Science 358(6367) (2017) M. Khorasaninejad, F. Capasso, Metalenses: Versatile multifunctional photonic components. Science 358(6367) (2017)
124.
go back to reference M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352(6290), 1190–4 (2016)PubMedCrossRef M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352(6290), 1190–4 (2016)PubMedCrossRef
125.
go back to reference M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, F. Capasso, Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17(3), 1819–1824 (2017)PubMedCrossRef M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, F. Capasso, Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17(3), 1819–1824 (2017)PubMedCrossRef
126.
go back to reference M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16(11), 7229–7234 (2016)PubMedCrossRef M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16(11), 7229–7234 (2016)PubMedCrossRef
127.
go back to reference R. Sawant, P. Bhumkar, A.Y. Zhu, P. Ni, F. Capasso, P. Genevet, Mitigating chromatic dispersion with hybrid optical metasurfaces. Adv. Mater. 31(3), e1805555 (2019) R. Sawant, P. Bhumkar, A.Y. Zhu, P. Ni, F. Capasso, P. Genevet, Mitigating chromatic dispersion with hybrid optical metasurfaces. Adv. Mater. 31(3), e1805555 (2019)
128.
go back to reference A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4(2), eaap9957 (2018) A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4(2), eaap9957 (2018)
129.
go back to reference N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–7 (2011)PubMedCrossRef N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–7 (2011)PubMedCrossRef
130.
go back to reference A.Y. Zhu, W.-T. Chen, M. Khorasaninejad, J. Oh, A. Zaidi, I. Mishra, R. C. Devlin, F. Capasso, Ultra-compact visible chiral spectrometer with meta-lenses. APL Photon. 2(3), 036103 (2017) A.Y. Zhu, W.-T. Chen, M. Khorasaninejad, J. Oh, A. Zaidi, I. Mishra, R. C. Devlin, F. Capasso, Ultra-compact visible chiral spectrometer with meta-lenses. APL Photon. 2(3), 036103 (2017)
131.
go back to reference P. Lalanne, Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16(10), 2517 (1999) P. Lalanne, Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16(10), 2517 (1999)
132.
go back to reference P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23(14), 1081 (1998) P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23(14), 1081 (1998)
133.
go back to reference P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999)CrossRef P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999)CrossRef
134.
go back to reference P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photon. Rev. 11(3), 1600295 (2017) P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photon. Rev. 11(3), 1600295 (2017)
135.
go back to reference P. Lalanne, J.P. Hugonin, P. Chavel, Optical properties of deep lamellar gratings: a coupled bloch-mode insight. J. Lightwave Technol. 24(6), 2442–2449 (2006)CrossRef P. Lalanne, J.P. Hugonin, P. Chavel, Optical properties of deep lamellar gratings: a coupled bloch-mode insight. J. Lightwave Technol. 24(6), 2442–2449 (2006)CrossRef
136.
go back to reference M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, Wide-field-angle behavior of blazed-binary gratings in the resonance domain. Opt. Lett. 25(23), 1690 (2000) M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, Wide-field-angle behavior of blazed-binary gratings in the resonance domain. Opt. Lett. 25(23), 1690 (2000)
137.
go back to reference C. Ribot, M.-S.L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, Broadband and efficient diffraction. Adv. Opt. Mater. 1(7), 489–493 (2013)CrossRef C. Ribot, M.-S.L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, Broadband and efficient diffraction. Adv. Opt. Mater. 1(7), 489–493 (2013)CrossRef
138.
go back to reference C. Sauvan, P. Lalanne, M.-S. L. Lee, Broadband blazing with artificial dielectrics. Opt. Lett. 29(14), 1593 (2004) C. Sauvan, P. Lalanne, M.-S. L. Lee, Broadband blazing with artificial dielectrics. Opt. Lett. 29(14), 1593 (2004)
139.
go back to reference S. Larouche, D.R. Smith, Reconciliation of generalized refraction with diffraction theory. Opt. Lett. 37(12), 2391–3 (2012)PubMedCrossRef S. Larouche, D.R. Smith, Reconciliation of generalized refraction with diffraction theory. Opt. Lett. 37(12), 2391–3 (2012)PubMedCrossRef
140.
go back to reference C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation New York, 2005) C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation New York, 2005)
141.
go back to reference T. Nakai, Diffractive Optical Element. Patent US6587272 (1999) T. Nakai, Diffractive Optical Element. Patent US6587272 (1999)
142.
go back to reference A.J. Glass, K.J. Weible, A. Schilling, H.P. Herzig, D.R. Lobb, J.W. Goodman, M. Chang, A.H. Guenther, T. Asakura, Achromatization of the diffraction efficiency of diffractive optical elements, in Proceedings SPIE 3749, 18th Congress of the International Commission for Optics, vol. 3749 (1999), pp. 378–379 A.J. Glass, K.J. Weible, A. Schilling, H.P. Herzig, D.R. Lobb, J.W. Goodman, M. Chang, A.H. Guenther, T. Asakura, Achromatization of the diffraction efficiency of diffractive optical elements, in Proceedings SPIE 3749, 18th Congress of the International Commission for Optics, vol. 3749 (1999), pp. 378–379
143.
go back to reference S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses. Opt. Exp. 27(24), 35621 (2019) S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses. Opt. Exp. 27(24), 35621 (2019)
144.
go back to reference M.T. Gale, Replication techniques for diffractive optical elements. Microelectron. Eng. 34(3–4), 321–339 (1997)CrossRef M.T. Gale, Replication techniques for diffractive optical elements. Microelectron. Eng. 34(3–4), 321–339 (1997)CrossRef
145.
go back to reference T. Nakai, H. Ogawa, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and Micro-Optics (Optical Society of America, 2002), DMA2 T. Nakai, H. Ogawa, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and Micro-Optics (Optical Society of America, 2002), DMA2
146.
go back to reference B.H. Kleemann, M. Seesselberg, J. Ruoff, Design concepts for broadband high-efficiency DOEs. J. Eur. Opt. Soc. Rapid Publ. 3 (2008) B.H. Kleemann, M. Seesselberg, J. Ruoff, Design concepts for broadband high-efficiency DOEs. J. Eur. Opt. Soc. Rapid Publ. 3 (2008)
147.
go back to reference M. Seesselberg, J. Ruoff, B.H. Kleemann, Diffractive optical element for colour sensor has multiple successive curvatures structure at right angles to extension direction. Patent DE102006007432 (2007) M. Seesselberg, J. Ruoff, B.H. Kleemann, Diffractive optical element for colour sensor has multiple successive curvatures structure at right angles to extension direction. Patent DE102006007432 (2007)
148.
go back to reference J.M. Trapp, M. Decker, J. Petschulat, T. Pertsch, T.G. Jabbour, Design of a 2 diopter holographic progressive lens. Opt. Exp. 26(25), 32866–32877 (2018)CrossRef J.M. Trapp, M. Decker, J. Petschulat, T. Pertsch, T.G. Jabbour, Design of a 2 diopter holographic progressive lens. Opt. Exp. 26(25), 32866–32877 (2018)CrossRef
149.
go back to reference W.C. Sweatt, Describing holographic optical elements as lenses. J. Opt. Soc. Am. 67(6), 803 (1977) W.C. Sweatt, Describing holographic optical elements as lenses. J. Opt. Soc. Am. 67(6), 803 (1977)
150.
go back to reference J.M. Trapp, T.G. Jabbour, G. Kelch, T. Pertsch, M. Decker, Hybrid refractive holographic single vision spectacle lenses. J. Eur. Opt. Soc.-Rapid Publ. 15(1), 14 (2019) J.M. Trapp, T.G. Jabbour, G. Kelch, T. Pertsch, M. Decker, Hybrid refractive holographic single vision spectacle lenses. J. Eur. Opt. Soc.-Rapid Publ. 15(1), 14 (2019)
151.
go back to reference G.J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements (Report, Lincoln Laboratory Massachusetts Institute of Technology, 1989) G.J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements (Report, Lincoln Laboratory Massachusetts Institute of Technology, 1989)
152.
go back to reference S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon, Imaging with flat optics: metalenses or diffractive lenses? Opt. 6(6), 805 (2019) S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon, Imaging with flat optics: metalenses or diffractive lenses? Opt. 6(6), 805 (2019)
153.
go back to reference G. Kim, J.A. Dominguez-Caballero, R. Menon, Design and analysis of multi-wavelength diffractive optics. Opt. Exp. 20(3), 2814–23 (2012)CrossRef G. Kim, J.A. Dominguez-Caballero, R. Menon, Design and analysis of multi-wavelength diffractive optics. Opt. Exp. 20(3), 2814–23 (2012)CrossRef
154.
go back to reference N. Mohammad, M. Meem, X. Wan, R. Menon, Full-color, large area, transmissive holograms enabled by multi-level diffractive optics. Sci. Rep. 7(1), 5789 (2017) N. Mohammad, M. Meem, X. Wan, R. Menon, Full-color, large area, transmissive holograms enabled by multi-level diffractive optics. Sci. Rep. 7(1), 5789 (2017)
155.
go back to reference P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016) P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016)
156.
go back to reference Y. Arieli, S. Noach, S. Ozeri, N. Eisenberg, Design of diffractive optical elements for multiple wavelengths. Appl. Opt. 37(26), 6174 (1998) Y. Arieli, S. Noach, S. Ozeri, N. Eisenberg, Design of diffractive optical elements for multiple wavelengths. Appl. Opt. 37(26), 6174 (1998)
157.
go back to reference Y. Arieli, S. Ozeri, N. Eisenberg, S. Noach, Design of a diffractive optical element for wide spectral bandwidth. Opt. Lett. 23(11), 823 (1998) Y. Arieli, S. Ozeri, N. Eisenberg, S. Noach, Design of a diffractive optical element for wide spectral bandwidth. Opt. Lett. 23(11), 823 (1998)
158.
go back to reference J.A. Davison, M.J. Simpson, History and development of the apodized diffractive intraocular lens. J. Cataract Refractive Surgery 32(5), 849–58 (2006)CrossRef J.A. Davison, M.J. Simpson, History and development of the apodized diffractive intraocular lens. J. Cataract Refractive Surgery 32(5), 849–58 (2006)CrossRef
159.
go back to reference A.A. Kazemi, B. Kress, T. Starner, B.C. Kress, S. Thibault, A review of head-mounted displays (HMD) technologies and applications for consumer electronics, in Proceedings SPIE 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV (2013), p. 87200A A.A. Kazemi, B. Kress, T. Starner, B.C. Kress, S. Thibault, A review of head-mounted displays (HMD) technologies and applications for consumer electronics, in Proceedings SPIE 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV (2013), p. 87200A
160.
go back to reference G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov, S.A. Stepanov, Diffractive-refractive correction units for plastic compact zoom lenses. Appl. Opt. 51(20), 4597–604 (2012)PubMedCrossRef G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov, S.A. Stepanov, Diffractive-refractive correction units for plastic compact zoom lenses. Appl. Opt. 51(20), 4597–604 (2012)PubMedCrossRef
161.
go back to reference G.I. Greisukh, E.G. Ezhov, I.A. Levin, S.A. Stepanov, Design of achromatic and apochromatic plastic micro-objectives. Appl. Opt. 49(23), 4379–84 (2010)PubMedCrossRef G.I. Greisukh, E.G. Ezhov, I.A. Levin, S.A. Stepanov, Design of achromatic and apochromatic plastic micro-objectives. Appl. Opt. 49(23), 4379–84 (2010)PubMedCrossRef
162.
go back to reference G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, Diffractive-refractive hybrid corrector for achroand apochromatic corrections of optical systems. Appl. Opt. 45(24), 6137 (2006) G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, Diffractive-refractive hybrid corrector for achroand apochromatic corrections of optical systems. Appl. Opt. 45(24), 6137 (2006)
163.
go back to reference T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27(14), 2960–71 (1988)PubMedCrossRef T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27(14), 2960–71 (1988)PubMedCrossRef
164.
go back to reference D.A. Buralli, G.M. Morris, Effects of diffraction efficiency on the modulation transfer function of diffractive lenses. Appl. Opt. 31(22), 4389–96 (1992)PubMedCrossRef D.A. Buralli, G.M. Morris, Effects of diffraction efficiency on the modulation transfer function of diffractive lenses. Appl. Opt. 31(22), 4389–96 (1992)PubMedCrossRef
165.
go back to reference D. Faklis, G.M. Morris, Spectral properties of multiorder diffractive lenses. Appl. Opt. 34(14), 2462–2468 (1995)PubMedCrossRef D. Faklis, G.M. Morris, Spectral properties of multiorder diffractive lenses. Appl. Opt. 34(14), 2462–2468 (1995)PubMedCrossRef
166.
go back to reference C. Londono, P.P. Clark, Modeling diffraction efficiency effects when designing hybrid diffractive lens systems. Appl. Opt. 31(13), 2248–52 (1992)PubMedCrossRef C. Londono, P.P. Clark, Modeling diffraction efficiency effects when designing hybrid diffractive lens systems. Appl. Opt. 31(13), 2248–52 (1992)PubMedCrossRef
167.
go back to reference M.D. Missig, G.M. Morris, Diffractive optics applied to eyepiece design. Appl. Opt. 34(14), 2452–61 (1995)PubMedCrossRef M.D. Missig, G.M. Morris, Diffractive optics applied to eyepiece design. Appl. Opt. 34(14), 2452–61 (1995)PubMedCrossRef
168.
go back to reference E. Noponen, J. Turunen, A. Vasara, Parametric optimization of multilevel diffractive optical elements by electromagnetic theory. Appl. Opt. 31(28), 5910–2 (1992)PubMedCrossRef E. Noponen, J. Turunen, A. Vasara, Parametric optimization of multilevel diffractive optical elements by electromagnetic theory. Appl. Opt. 31(28), 5910–2 (1992)PubMedCrossRef
169.
170.
go back to reference M. Meem, S. Banerji, C. Pies, T. Oberbiermann, A. Majumder, B. Sensale-Rodriguez, R. Menon, Large-area, high-numerical-aperture multi-level diffractive lens via inverse design. Optica 7(3), 252 (2020) M. Meem, S. Banerji, C. Pies, T. Oberbiermann, A. Majumder, B. Sensale-Rodriguez, R. Menon, Large-area, high-numerical-aperture multi-level diffractive lens via inverse design. Optica 7(3), 252 (2020)
171.
go back to reference S. Schmidt, S. Thiele, A. Herkommer, A. Tunnermann, H. Gross, Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses. Opt. Lett. 42(8), 1612–1615 (2017)PubMedCrossRef S. Schmidt, S. Thiele, A. Herkommer, A. Tunnermann, H. Gross, Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses. Opt. Lett. 42(8), 1612–1615 (2017)PubMedCrossRef
172.
go back to reference H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)CrossRef H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)CrossRef
Metadata
Title
Introduction
Author
Daniel Werdehausen
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-75684-0_1