Skip to main content
Top

2021 | OriginalPaper | Chapter

2. Fundamentals of Effective Materials and Diffractive Optics

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, I introduce the fundamental concepts and relationships from the different fields, including electrodynamics, optical design, materials science, and diffractive optics, which are central to the following chapters. This chapter is not intended to replace a textbook but should rather serve as a reference, which provides the readers with the relevant basics of fields with which they are not familiar.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Russakoff, A derivation of the macroscopic Maxwell equations. Am. J. Phys. 38(10), 1188–1195 (1970)CrossRef G. Russakoff, A derivation of the macroscopic Maxwell equations. Am. J. Phys. 38(10), 1188–1195 (1970)CrossRef
2.
go back to reference J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999) J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)
3.
go back to reference D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Optica 6(8), 1031 (2019) D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Optica 6(8), 1031 (2019)
4.
go back to reference J. Mistrik, S. Kasap, H. E. Ruda, C. Koughia, J. Singh, Optical properties of electronic materials: fundamentals and characterization, in Springer Handbook of Electronic and Photonic Materials, ed. by P. Kasap Safa Capper (Springer, Cham, 2017), p. 1 J. Mistrik, S. Kasap, H. E. Ruda, C. Koughia, J. Singh, Optical properties of electronic materials: fundamentals and characterization, in Springer Handbook of Electronic and Photonic Materials, ed. by P. Kasap Safa Capper (Springer, Cham, 2017), p. 1
5.
go back to reference H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)CrossRef H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)CrossRef
6.
go back to reference T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27(14), 2960–71 (1988)CrossRef T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27(14), 2960–71 (1988)CrossRef
7.
go back to reference C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008) C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008)
8.
go back to reference X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019) X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019)
9.
go back to reference I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecular ensembles. Chem. Phys. Chem. 21, 878 (2020) I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecular ensembles. Chem. Phys. Chem. 21, 878 (2020)
10.
go back to reference D. Theobald, A. Egel, G. Gomard, U. Lemmer. Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles. Phys. Rev. B 96(3), 033822 (2017) D. Theobald, A. Egel, G. Gomard, U. Lemmer. Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles. Phys. Rev. B 96(3), 033822 (2017)
11.
go back to reference M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef
12.
go back to reference M.I. Mishchenko, L.D. Travis, A. Macke, Scattering of light by polydisperse, randomly oriented, finite circular cylinders. Appl. Opt. 35(24), 4927–4940 (1996)CrossRef M.I. Mishchenko, L.D. Travis, A. Macke, Scattering of light by polydisperse, randomly oriented, finite circular cylinders. Appl. Opt. 35(24), 4927–4940 (1996)CrossRef
13.
go back to reference G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 330(3), 377–445 (1908)CrossRef G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 330(3), 377–445 (1908)CrossRef
14.
go back to reference V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)CrossRef V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)CrossRef
15.
go back to reference P. Mallet, C.-A. Guérin, A. Sentenac. Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy. Phys. Rev. B 72(1), 014205 (2005) P. Mallet, C.-A. Guérin, A. Sentenac. Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy. Phys. Rev. B 72(1), 014205 (2005)
16.
go back to reference W.T. Doyle, Optical properties of a suspension of metal spheres. Phys. Rev. B 39(14), 9852 (1989) W.T. Doyle, Optical properties of a suspension of metal spheres. Phys. Rev. B 39(14), 9852 (1989)
17.
go back to reference R. Ruppin, Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182(4), 273–279 (2000)CrossRef R. Ruppin, Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182(4), 273–279 (2000)CrossRef
18.
go back to reference J.M.G. Cowie, V. Arrighi, Polymers: Chemistry and Physics of Modern Materials (CRC Press, Boca Raton, 2007)CrossRef J.M.G. Cowie, V. Arrighi, Polymers: Chemistry and Physics of Modern Materials (CRC Press, Boca Raton, 2007)CrossRef
19.
go back to reference S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214
20.
go back to reference S.K. Kumar, R. Krishnamoorti, Nanocomposites: structure, phase behavior, and properties. Ann. Rev. Chem. Biomolecular Eng. 1(1), 37–58 (2010) S.K. Kumar, R. Krishnamoorti, Nanocomposites: structure, phase behavior, and properties. Ann. Rev. Chem. Biomolecular Eng. 1(1), 37–58 (2010)
21.
go back to reference G. Kickelbick, The search of a homogeneously dispersed material-the art of handling the organic polymer/metal oxide interface. J. Sol-Gel Sci. Technol 46(3), 281–290 (2008)CrossRef G. Kickelbick, The search of a homogeneously dispersed material-the art of handling the organic polymer/metal oxide interface. J. Sol-Gel Sci. Technol 46(3), 281–290 (2008)CrossRef
22.
go back to reference P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef
23.
go back to reference P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12, 1–39 (2009)CrossRef P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12, 1–39 (2009)CrossRef
24.
go back to reference S.G. Advani, K.-T. Hsaio, Manufacturing Techniques for Polymer Matrix Composites (Woodhead Publishing Limited, 2012) S.G. Advani, K.-T. Hsaio, Manufacturing Techniques for Polymer Matrix Composites (Woodhead Publishing Limited, 2012)
25.
go back to reference Z. Chen, Pixelligent Zirconia Nano-Crystals for OLED applications, in White Paper (2014) Z. Chen, Pixelligent Zirconia Nano-Crystals for OLED applications, in White Paper (2014)
26.
go back to reference D. Russel, A. Stabell. Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016) D. Russel, A. Stabell. Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016)
27.
go back to reference Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014) Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014)
28.
go back to reference Z. Chen, S. Monickam, M. Weinstein, Low chromatic aberration nanocomposite, in White Paper (2015) Z. Chen, S. Monickam, M. Weinstein, Low chromatic aberration nanocomposite, in White Paper (2015)
29.
go back to reference C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation New York, 2005) C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation New York, 2005)
30.
go back to reference T. Nakai, Diffractive Optical Element. Patent US6587272 (1999) T. Nakai, Diffractive Optical Element. Patent US6587272 (1999)
31.
go back to reference H. Ukuda, Optical material, and, optical element, optical system and laminated diffractive optical element using it. Patent US20050110830 (2005) H. Ukuda, Optical material, and, optical element, optical system and laminated diffractive optical element using it. Patent US20050110830 (2005)
32.
go back to reference S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses, in Opt. Exp. 27(24), 35621 (2019) S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses, in Opt. Exp. 27(24), 35621 (2019)
33.
go back to reference M.T. Gale, Replication techniques for diffractive optical elements. Microelectron. Eng. 34(3–4), 321–339 (1997)CrossRef M.T. Gale, Replication techniques for diffractive optical elements. Microelectron. Eng. 34(3–4), 321–339 (1997)CrossRef
34.
go back to reference T. Nakai, H. Ogawa, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and Micro-Optics. Optical Society of America, DMA2 (2002) T. Nakai, H. Ogawa, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and Micro-Optics. Optical Society of America, DMA2 (2002)
35.
go back to reference B.H. Kleemann, M. Seesselberg, J. Ruoff, Design concepts for broadband high-efficiency DOEs. J. Eur. Opt. Soc. Rapid Pub. 3 (2008) B.H. Kleemann, M. Seesselberg, J. Ruoff, Design concepts for broadband high-efficiency DOEs. J. Eur. Opt. Soc. Rapid Pub. 3 (2008)
36.
go back to reference M. Seesselberg, J. Ruoff, B.H. Kleemann, Diffractive optical element for colour sensor has multiple successive curvatures structure at right angles to extension direction. Patent DE102006007432 (2007) M. Seesselberg, J. Ruoff, B.H. Kleemann, Diffractive optical element for colour sensor has multiple successive curvatures structure at right angles to extension direction. Patent DE102006007432 (2007)
37.
go back to reference J.M. Trapp, M. Decker, J. Petschulat, T. Pertsch, T.G. Jabbour, Design of a 2 diopter holographic progressive lens. Opt. Exp. 26(25), 32866–32877 (2018)CrossRef J.M. Trapp, M. Decker, J. Petschulat, T. Pertsch, T.G. Jabbour, Design of a 2 diopter holographic progressive lens. Opt. Exp. 26(25), 32866–32877 (2018)CrossRef
38.
go back to reference W.C. Sweatt. Describing holographic optical elements as lenses. J. Opt. Soc. Am. 67(6), 803 (1977) W.C. Sweatt. Describing holographic optical elements as lenses. J. Opt. Soc. Am. 67(6), 803 (1977)
39.
go back to reference J.M. Trapp, T.G. Jabbour, G. Kelch, T. Pertsch, M. Decker, Hybrid refractive holographic single vision spectacle lenses. J. Eur. Opt. Soc.-Rapid Pub. 15(1), 14 (2019) J.M. Trapp, T.G. Jabbour, G. Kelch, T. Pertsch, M. Decker, Hybrid refractive holographic single vision spectacle lenses. J. Eur. Opt. Soc.-Rapid Pub. 15(1), 14 (2019)
40.
go back to reference G.J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements (Report, Lincoln Laboratory Massachusetts Institute of Technology, 1989) G.J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements (Report, Lincoln Laboratory Massachusetts Institute of Technology, 1989)
41.
go back to reference S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon. Imaging with flat optics: metalenses or diffractive lenses? Opt. 6(6), 805 (2019) S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon. Imaging with flat optics: metalenses or diffractive lenses? Opt. 6(6), 805 (2019)
42.
go back to reference G. Kim, J.A. Dominguez-Caballero, R. Menon, Design and analysis of multi-wavelength diffractive optics. Opt. Exp. 20(3), 2814–23 (2012)CrossRef G. Kim, J.A. Dominguez-Caballero, R. Menon, Design and analysis of multi-wavelength diffractive optics. Opt. Exp. 20(3), 2814–23 (2012)CrossRef
43.
go back to reference N. Mohammad, M. Meem, X. Wan, R. Menon, Full-color, large area, transmissive holograms enabled by multi-level diffractive optics, Sci. Rep. 7(1), 5789 (2017) N. Mohammad, M. Meem, X. Wan, R. Menon, Full-color, large area, transmissive holograms enabled by multi-level diffractive optics, Sci. Rep. 7(1), 5789 (2017)
44.
go back to reference P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016) P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016)
45.
go back to reference P. Lalanne, Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16(10), 2517 (1999) P. Lalanne, Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16(10), 2517 (1999)
46.
go back to reference P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings, Opt. Lett. 23(14), 1081 (1998) P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings, Opt. Lett. 23(14), 1081 (1998)
47.
go back to reference P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999)CrossRef P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999)CrossRef
48.
go back to reference P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11(3), 1600295 (2017) P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11(3), 1600295 (2017)
49.
go back to reference P. Lalanne, J.P. Hugonin, P. Chavel, Optical properties of deep lamellar Gratings: a coupled Bloch-mode insight. J. Lightwave Technol. 24(6), 2442–2449 (2006)CrossRef P. Lalanne, J.P. Hugonin, P. Chavel, Optical properties of deep lamellar Gratings: a coupled Bloch-mode insight. J. Lightwave Technol. 24(6), 2442–2449 (2006)CrossRef
50.
go back to reference M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, Wide-field-angle behavior of blazed-binary gratings in the resonance domain. Opt. Lett. 25(23), 1690 (2000) M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, Wide-field-angle behavior of blazed-binary gratings in the resonance domain. Opt. Lett. 25(23), 1690 (2000)
51.
go back to reference C. Ribot, M.-S.L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, Broadband and efficient diffraction. Adv. Opt. Mater. 1(7), 489–493 (2013)CrossRef C. Ribot, M.-S.L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, Broadband and efficient diffraction. Adv. Opt. Mater. 1(7), 489–493 (2013)CrossRef
52.
go back to reference C. Sauvan, P. Lalanne, M.-S. L. Lee. Broadband blazing with artificial dielectrics. Opt. Lett. 29(14), 1593 (2004) C. Sauvan, P. Lalanne, M.-S. L. Lee. Broadband blazing with artificial dielectrics. Opt. Lett. 29(14), 1593 (2004)
53.
go back to reference Y. Arieli, S. Noach, S. Ozeri, N. Eisenberg, Design of diffractive optical elements for multiple wavelengths. Appl. Opt. 37(26), 6174 (1998) Y. Arieli, S. Noach, S. Ozeri, N. Eisenberg, Design of diffractive optical elements for multiple wavelengths. Appl. Opt. 37(26), 6174 (1998)
54.
go back to reference Y. Arieli, S. Ozeri, N. Eisenberg, S. Noach, Design of a diffractive optical element for wide spectral bandwidth. Opt. Lett. 23(11), 823 (1998) Y. Arieli, S. Ozeri, N. Eisenberg, S. Noach, Design of a diffractive optical element for wide spectral bandwidth. Opt. Lett. 23(11), 823 (1998)
55.
go back to reference D.A. Buralli, G.M. Morris, Effects of diffraction efficiency on the modulation transfer function of diffractive lenses. Appl. Opt. 31(22), 4389–96 (1992)CrossRef D.A. Buralli, G.M. Morris, Effects of diffraction efficiency on the modulation transfer function of diffractive lenses. Appl. Opt. 31(22), 4389–96 (1992)CrossRef
56.
go back to reference J.A. Davison, M.J. Simpson, History and development of the apodized diffractive intraocular lens. J. Cataract Refractive Surgery 32(5), 849–58 (2006)CrossRef J.A. Davison, M.J. Simpson, History and development of the apodized diffractive intraocular lens. J. Cataract Refractive Surgery 32(5), 849–58 (2006)CrossRef
57.
go back to reference D. Faklis, G.M. Morris, Spectral properties of multiorder diffractive lenses. Appl. Opt. 34(14), 2462–2468 (1995)CrossRef D. Faklis, G.M. Morris, Spectral properties of multiorder diffractive lenses. Appl. Opt. 34(14), 2462–2468 (1995)CrossRef
58.
go back to reference A.J. Glass, K.J. Weible, A. Schilling, H.P. Herzig, D.R. Lobb, J.W. Goodman, M. Chang, A.H. Guenther, T. Asakura, Achromatization of the diffraction efficiency of diffractive optical elements, in Proceedings SPIE 3749, 18th Congress of the International Commission for Optics, vol. 3749 (1999), pp. 378–379 A.J. Glass, K.J. Weible, A. Schilling, H.P. Herzig, D.R. Lobb, J.W. Goodman, M. Chang, A.H. Guenther, T. Asakura, Achromatization of the diffraction efficiency of diffractive optical elements, in Proceedings SPIE 3749, 18th Congress of the International Commission for Optics, vol. 3749 (1999), pp. 378–379
59.
go back to reference G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov, S.A. Stepanov, Diffractive-refractive correction units for plastic compact zoom lenses. Appl. Opt. 51(20), 4597–604 (2012)CrossRef G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov, S.A. Stepanov, Diffractive-refractive correction units for plastic compact zoom lenses. Appl. Opt. 51(20), 4597–604 (2012)CrossRef
60.
go back to reference G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, Diffractive-refractive hybrid corrector for achroand apochromatic corrections of optical systems. Appl. Opt. 45(24), 6137 (2006) G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, Diffractive-refractive hybrid corrector for achroand apochromatic corrections of optical systems. Appl. Opt. 45(24), 6137 (2006)
61.
go back to reference C. Londono, P.P. Clark, Modeling diffraction efficiency effects when designing hybrid diffractive lens systems. Appl. Opt. 31(13), 2248–52 (1992)CrossRef C. Londono, P.P. Clark, Modeling diffraction efficiency effects when designing hybrid diffractive lens systems. Appl. Opt. 31(13), 2248–52 (1992)CrossRef
62.
go back to reference M.D. Missig, G.M. Morris, Diffractive optics applied to eyepiece design. Appl. Opt. 34(14), 2452–61 (1995)CrossRef M.D. Missig, G.M. Morris, Diffractive optics applied to eyepiece design. Appl. Opt. 34(14), 2452–61 (1995)CrossRef
63.
go back to reference E. Noponen, J. Turunen, A. Vasara, Parametric optimization of multilevel diffractive optical elements by electromagnetic theory. Appl. Opt. 31(28), 5910–2 (1992)CrossRef E. Noponen, J. Turunen, A. Vasara, Parametric optimization of multilevel diffractive optical elements by electromagnetic theory. Appl. Opt. 31(28), 5910–2 (1992)CrossRef
64.
go back to reference D.W. Sweeney, G.E. Sommargren, Harmonic diffractive lenses. Appl. Opt. 34(14), 2469–2475 (1995)CrossRef D.W. Sweeney, G.E. Sommargren, Harmonic diffractive lenses. Appl. Opt. 34(14), 2469–2475 (1995)CrossRef
65.
go back to reference T.K. Gaylord, M.G. Moharam, Analysis and applications of optical diffraction by gratings. Proc. IEEE 73(5), 894–937 (1985)CrossRef T.K. Gaylord, M.G. Moharam, Analysis and applications of optical diffraction by gratings. Proc. IEEE 73(5), 894–937 (1985)CrossRef
66.
go back to reference O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, J. Ruoff, Rigorous analysis of shadowing effects in blazed transmission gratings. Opt. Lett. 31(24), 3638 (2006) O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, J. Ruoff, Rigorous analysis of shadowing effects in blazed transmission gratings. Opt. Lett. 31(24), 3638 (2006)
67.
go back to reference S. Schmidt, S. Thiele, A. Herkommer, A. Tunnermann, H. Gross, Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses. Opt. Lett. 42(8), 1612–1615 (2017)CrossRef S. Schmidt, S. Thiele, A. Herkommer, A. Tunnermann, H. Gross, Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses. Opt. Lett. 42(8), 1612–1615 (2017)CrossRef
68.
go back to reference D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Flat optics in high numerical aperture broadband imaging systems. J. Opt. 22(6), 065607 (2020) D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Flat optics in high numerical aperture broadband imaging systems. J. Opt. 22(6), 065607 (2020)
69.
go back to reference Schott, Optical Glass 2020. Tech. rep. Schott AG (2020) Schott, Optical Glass 2020. Tech. rep. Schott AG (2020)
70.
go back to reference N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Phys. Polonica-Series A General Phys. 116(4), 585 (2009) N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Phys. Polonica-Series A General Phys. 116(4), 585 (2009)
Metadata
Title
Fundamentals of Effective Materials and Diffractive Optics
Author
Daniel Werdehausen
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-75684-0_2