Abstract
In this chapter, I use large-scale numerical simulations to investigate the transition between the homogeneous and the heterogeneous regimes. To this end, I first introduce a procedure that enables me to obtain reliable refractive index values from numerical simulations of scatterer distributions, which are composed of hundreds of thousands of individual nanoparticles. I then demonstrate that this method indeed enables me to model the regime in which the distribution of scatterers acts as a bulk optical material. This then allows me to quantify how bulk optical nanocomposites must be designed and investigate whether the Maxwell-Garnett-Mie effective medium theory (EMT) is an accurate tool for the design of novel nanocomposite materials. Finally, I also show that the concept of an effective refractive index breaks down on multiple level as a material transitions from the homogeneous into the heterogeneous regime.