Skip to main content
Top

2021 | OriginalPaper | Chapter

3. Design of Bulk Optical Nanocomposites

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, I use large-scale numerical simulations to investigate the transition between the homogeneous and the heterogeneous regimes. To this end, I first introduce a procedure that enables me to obtain reliable refractive index values from numerical simulations of scatterer distributions, which are composed of hundreds of thousands of individual nanoparticles. I then demonstrate that this method indeed enables me to model the regime in which the distribution of scatterers acts as a bulk optical material. This then allows me to quantify how bulk optical nanocomposites must be designed and investigate whether the Maxwell-Garnett-Mie effective medium theory (EMT) is an accurate tool for the design of novel nanocomposite materials. Finally, I also show that the concept of an effective refractive index breaks down on multiple level as a material transitions from the homogeneous into the heterogeneous regime.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Aspnes, Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys. 50(8), 704–709 (1982)CrossRef D. Aspnes, Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys. 50(8), 704–709 (1982)CrossRef
2.
go back to reference H. Fearn, D.F. James, P.W. Milonni, Microscopic approach to reflection, transmission, and the Ewald-Oseen extinction theorem. Am. J. Phys. 64(8), 986–995 (1996)CrossRef H. Fearn, D.F. James, P.W. Milonni, Microscopic approach to reflection, transmission, and the Ewald-Oseen extinction theorem. Am. J. Phys. 64(8), 986–995 (1996)CrossRef
3.
go back to reference V.C. Ballenegger, T. Weber, The Ewald-Oseen extinction theorem and extinction lengths. Am. J. Phys. 67(7), 599–605 (1999)CrossRef V.C. Ballenegger, T. Weber, The Ewald-Oseen extinction theorem and extinction lengths. Am. J. Phys. 67(7), 599–605 (1999)CrossRef
4.
go back to reference P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl.Opt. 49(16), D157–D176 (2010) P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl.Opt. 49(16), D157–D176 (2010)
5.
go back to reference C.F. Bohren, Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmosp. Sci. 43(5), 468–475 (1986)CrossRef C.F. Bohren, Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmosp. Sci. 43(5), 468–475 (1986)CrossRef
6.
go back to reference L.L. Foldy, The multiple scattering of waves. i. general theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67(3–4), 107–119 (1945) L.L. Foldy, The multiple scattering of waves. i. general theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67(3–4), 107–119 (1945)
7.
go back to reference M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef
8.
go back to reference M.I. Mishchenko, L.D. Travis, T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109(1), 16–21 (1994)CrossRef M.I. Mishchenko, L.D. Travis, T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109(1), 16–21 (1994)CrossRef
9.
go back to reference A. Macke, M.I. Mishchenko, K. Muinonen, B.E. Carlson, Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method. Opt. Lett. 20(19), 1934–1936 (1995)CrossRef A. Macke, M.I. Mishchenko, K. Muinonen, B.E. Carlson, Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method. Opt. Lett. 20(19), 1934–1936 (1995)CrossRef
10.
go back to reference Z. Cui, Y. Han, Q. Xu, Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams. J. Opt. Soc. Am. A 28(11), 2200–2208 (2011)CrossRef Z. Cui, Y. Han, Q. Xu, Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams. J. Opt. Soc. Am. A 28(11), 2200–2208 (2011)CrossRef
11.
go back to reference L. Pattelli, A. Egel, U. Lemmer, D.S. Wiersma, Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5(9), 1037–1045 (2018)CrossRef L. Pattelli, A. Egel, U. Lemmer, D.S. Wiersma, Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5(9), 1037–1045 (2018)CrossRef
12.
go back to reference I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecular ensembles. Chem. Phys. Chem. 21, 878 (2020) I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecular ensembles. Chem. Phys. Chem. 21, 878 (2020)
13.
go back to reference A. Egel, L. Pattelli, G. Mazzamuto, D.S. Wiersma, U. Lemmer, CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres. J. Quant. Spect. Radiative Transfer 199, 103–110 (2017)CrossRef A. Egel, L. Pattelli, G. Mazzamuto, D.S. Wiersma, U. Lemmer, CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres. J. Quant. Spect. Radiative Transfer 199, 103–110 (2017)CrossRef
14.
go back to reference D. Werdehausen, X.G. Santiago, S. Burger, I. Staude, T. Pertsch, C. Rockstuhl, M. Decker, Modelling optical materials at the single scatterer level—The transition from homogeneous to heterogeneous materials. Adv. Theory Simul. 3, 2000192 (2020) D. Werdehausen, X.G. Santiago, S. Burger, I. Staude, T. Pertsch, C. Rockstuhl, M. Decker, Modelling optical materials at the single scatterer level—The transition from homogeneous to heterogeneous materials. Adv. Theory Simul. 3, 2000192 (2020)
15.
go back to reference X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019) X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019)
16.
go back to reference B. Freireich, M. Kodam, C. Wassgren, An exact method for determining local solid fractions in discrete element method simulations. AIChE J. 56(12), 3036–3048 (2010)CrossRef B. Freireich, M. Kodam, C. Wassgren, An exact method for determining local solid fractions in discrete element method simulations. AIChE J. 56(12), 3036–3048 (2010)CrossRef
17.
go back to reference F. Chen, P.R. Bakic, A.D.A. Maidment, S.T. Jensen, X. Shi, D.D. Pokrajac, Description and characterization of a novel method for partial volume simulation in software breast phantoms. IEEE Trans. Med. Imaging 34(10), 2146–2161 (2015)CrossRef F. Chen, P.R. Bakic, A.D.A. Maidment, S.T. Jensen, X. Shi, D.D. Pokrajac, Description and characterization of a novel method for partial volume simulation in software breast phantoms. IEEE Trans. Med. Imaging 34(10), 2146–2161 (2015)CrossRef
18.
go back to reference A. Rahbari, R. Hens, I.K. Nikolaidis, A. Poursaeidesfahani, M. Ramdin, I.G. Economou, O.A. Moultos, D. Dubbeldam, T.J.H. Vlugt, Computation of partial molar properties using continuous fractional component Monte Carlo. Molecular Phys. 116(21–22), 3331–3344 (2018)CrossRef A. Rahbari, R. Hens, I.K. Nikolaidis, A. Poursaeidesfahani, M. Ramdin, I.G. Economou, O.A. Moultos, D. Dubbeldam, T.J.H. Vlugt, Computation of partial molar properties using continuous fractional component Monte Carlo. Molecular Phys. 116(21–22), 3331–3344 (2018)CrossRef
19.
go back to reference M. Decker, I. Staude, Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18(10), 103001 (2016) M. Decker, I. Staude, Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18(10), 103001 (2016)
20.
go back to reference N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Physica Polonica-Ser. A General Phys. 116(4), 585 (2009) N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Physica Polonica-Ser. A General Phys. 116(4), 585 (2009)
21.
go back to reference S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010) S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010)
22.
go back to reference P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef
23.
go back to reference J.L.H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S.L.-C. Hsu, T.-L. Li, Transparent high refractive index nanocomposite thin films. Mater. Lett. 61(14–15), 2908–2910 (2007)CrossRef J.L.H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S.L.-C. Hsu, T.-L. Li, Transparent high refractive index nanocomposite thin films. Mater. Lett. 61(14–15), 2908–2910 (2007)CrossRef
24.
go back to reference S. Lee, H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, U. Paik, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J. Mater. Chem. 18(15), 1751–1755 (2008)CrossRef S. Lee, H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, U. Paik, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J. Mater. Chem. 18(15), 1751–1755 (2008)CrossRef
25.
go back to reference C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003)CrossRef C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003)CrossRef
26.
go back to reference C. Lü, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, J. Shen, Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J. Mater. Chem. 13(9), 2189–2195 (2003)CrossRef C. Lü, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, J. Shen, Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J. Mater. Chem. 13(9), 2189–2195 (2003)CrossRef
27.
go back to reference C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17(9), 2448–2454 (2005)CrossRef C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17(9), 2448–2454 (2005)CrossRef
28.
go back to reference C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–2901 (2009)CrossRef C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–2901 (2009)CrossRef
29.
go back to reference R.J. Nussbaumer, W.R. Caseri, P. Smith, T. Tervoort, Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromolecular Mater. Eng. 288(1), 44–49 (2003) R.J. Nussbaumer, W.R. Caseri, P. Smith, T. Tervoort, Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromolecular Mater. Eng. 288(1), 44–49 (2003)
30.
go back to reference D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65(19) (2002) D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65(19) (2002)
31.
go back to reference C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B 84(1–2), 219–227 (2006)CrossRef C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B 84(1–2), 219–227 (2006)CrossRef
32.
go back to reference E. Ospadov, J. Tao, V.N. Staroverov, J.P. Perdew, Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn-Sham potential. Proc. Natl. Acad. Sci. 115(50), E11578–E11585 (2018)CrossRef E. Ospadov, J. Tao, V.N. Staroverov, J.P. Perdew, Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn-Sham potential. Proc. Natl. Acad. Sci. 115(50), E11578–E11585 (2018)CrossRef
33.
go back to reference M. Lax, Multiple scattering of waves. Rev. Modern Phys. 23(4), 287–310 (1951)CrossRef M. Lax, Multiple scattering of waves. Rev. Modern Phys. 23(4), 287–310 (1951)CrossRef
34.
go back to reference D. Werdehausen, I. Staude, S. Burger, J. Petschulat, T. Scharf, T. Pertsch, M. Decker, Design rules for customizable optical materials based on nanocomposites. Opt. Mater. Exp. 8(11), 3456 (2018) D. Werdehausen, I. Staude, S. Burger, J. Petschulat, T. Scharf, T. Pertsch, M. Decker, Design rules for customizable optical materials based on nanocomposites. Opt. Mater. Exp. 8(11), 3456 (2018)
35.
go back to reference Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in White Paper (2014) Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in White Paper (2014)
36.
go back to reference D. Russel, A. Stabell. Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016) D. Russel, A. Stabell. Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016)
37.
go back to reference Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014) Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014)
Metadata
Title
Design of Bulk Optical Nanocomposites
Author
Daniel Werdehausen
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-75684-0_3