Skip to main content

2021 | OriginalPaper | Buchkapitel

3. Design of Bulk Optical Nanocomposites

verfasst von : Daniel Werdehausen

Erschienen in: Nanocomposites as Next-Generation Optical Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, I use large-scale numerical simulations to investigate the transition between the homogeneous and the heterogeneous regimes. To this end, I first introduce a procedure that enables me to obtain reliable refractive index values from numerical simulations of scatterer distributions, which are composed of hundreds of thousands of individual nanoparticles. I then demonstrate that this method indeed enables me to model the regime in which the distribution of scatterers acts as a bulk optical material. This then allows me to quantify how bulk optical nanocomposites must be designed and investigate whether the Maxwell-Garnett-Mie effective medium theory (EMT) is an accurate tool for the design of novel nanocomposite materials. Finally, I also show that the concept of an effective refractive index breaks down on multiple level as a material transitions from the homogeneous into the heterogeneous regime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Aspnes, Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys. 50(8), 704–709 (1982)CrossRef D. Aspnes, Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys. 50(8), 704–709 (1982)CrossRef
2.
Zurück zum Zitat H. Fearn, D.F. James, P.W. Milonni, Microscopic approach to reflection, transmission, and the Ewald-Oseen extinction theorem. Am. J. Phys. 64(8), 986–995 (1996)CrossRef H. Fearn, D.F. James, P.W. Milonni, Microscopic approach to reflection, transmission, and the Ewald-Oseen extinction theorem. Am. J. Phys. 64(8), 986–995 (1996)CrossRef
3.
Zurück zum Zitat V.C. Ballenegger, T. Weber, The Ewald-Oseen extinction theorem and extinction lengths. Am. J. Phys. 67(7), 599–605 (1999)CrossRef V.C. Ballenegger, T. Weber, The Ewald-Oseen extinction theorem and extinction lengths. Am. J. Phys. 67(7), 599–605 (1999)CrossRef
4.
Zurück zum Zitat P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl.Opt. 49(16), D157–D176 (2010) P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl.Opt. 49(16), D157–D176 (2010)
5.
Zurück zum Zitat C.F. Bohren, Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmosp. Sci. 43(5), 468–475 (1986)CrossRef C.F. Bohren, Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmosp. Sci. 43(5), 468–475 (1986)CrossRef
6.
Zurück zum Zitat L.L. Foldy, The multiple scattering of waves. i. general theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67(3–4), 107–119 (1945) L.L. Foldy, The multiple scattering of waves. i. general theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67(3–4), 107–119 (1945)
7.
Zurück zum Zitat M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef
8.
Zurück zum Zitat M.I. Mishchenko, L.D. Travis, T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109(1), 16–21 (1994)CrossRef M.I. Mishchenko, L.D. Travis, T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109(1), 16–21 (1994)CrossRef
9.
Zurück zum Zitat A. Macke, M.I. Mishchenko, K. Muinonen, B.E. Carlson, Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method. Opt. Lett. 20(19), 1934–1936 (1995)CrossRef A. Macke, M.I. Mishchenko, K. Muinonen, B.E. Carlson, Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method. Opt. Lett. 20(19), 1934–1936 (1995)CrossRef
10.
Zurück zum Zitat Z. Cui, Y. Han, Q. Xu, Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams. J. Opt. Soc. Am. A 28(11), 2200–2208 (2011)CrossRef Z. Cui, Y. Han, Q. Xu, Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams. J. Opt. Soc. Am. A 28(11), 2200–2208 (2011)CrossRef
11.
Zurück zum Zitat L. Pattelli, A. Egel, U. Lemmer, D.S. Wiersma, Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5(9), 1037–1045 (2018)CrossRef L. Pattelli, A. Egel, U. Lemmer, D.S. Wiersma, Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5(9), 1037–1045 (2018)CrossRef
12.
Zurück zum Zitat I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecular ensembles. Chem. Phys. Chem. 21, 878 (2020) I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecular ensembles. Chem. Phys. Chem. 21, 878 (2020)
13.
Zurück zum Zitat A. Egel, L. Pattelli, G. Mazzamuto, D.S. Wiersma, U. Lemmer, CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres. J. Quant. Spect. Radiative Transfer 199, 103–110 (2017)CrossRef A. Egel, L. Pattelli, G. Mazzamuto, D.S. Wiersma, U. Lemmer, CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres. J. Quant. Spect. Radiative Transfer 199, 103–110 (2017)CrossRef
14.
Zurück zum Zitat D. Werdehausen, X.G. Santiago, S. Burger, I. Staude, T. Pertsch, C. Rockstuhl, M. Decker, Modelling optical materials at the single scatterer level—The transition from homogeneous to heterogeneous materials. Adv. Theory Simul. 3, 2000192 (2020) D. Werdehausen, X.G. Santiago, S. Burger, I. Staude, T. Pertsch, C. Rockstuhl, M. Decker, Modelling optical materials at the single scatterer level—The transition from homogeneous to heterogeneous materials. Adv. Theory Simul. 3, 2000192 (2020)
15.
Zurück zum Zitat X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019) X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019)
16.
Zurück zum Zitat B. Freireich, M. Kodam, C. Wassgren, An exact method for determining local solid fractions in discrete element method simulations. AIChE J. 56(12), 3036–3048 (2010)CrossRef B. Freireich, M. Kodam, C. Wassgren, An exact method for determining local solid fractions in discrete element method simulations. AIChE J. 56(12), 3036–3048 (2010)CrossRef
17.
Zurück zum Zitat F. Chen, P.R. Bakic, A.D.A. Maidment, S.T. Jensen, X. Shi, D.D. Pokrajac, Description and characterization of a novel method for partial volume simulation in software breast phantoms. IEEE Trans. Med. Imaging 34(10), 2146–2161 (2015)CrossRef F. Chen, P.R. Bakic, A.D.A. Maidment, S.T. Jensen, X. Shi, D.D. Pokrajac, Description and characterization of a novel method for partial volume simulation in software breast phantoms. IEEE Trans. Med. Imaging 34(10), 2146–2161 (2015)CrossRef
18.
Zurück zum Zitat A. Rahbari, R. Hens, I.K. Nikolaidis, A. Poursaeidesfahani, M. Ramdin, I.G. Economou, O.A. Moultos, D. Dubbeldam, T.J.H. Vlugt, Computation of partial molar properties using continuous fractional component Monte Carlo. Molecular Phys. 116(21–22), 3331–3344 (2018)CrossRef A. Rahbari, R. Hens, I.K. Nikolaidis, A. Poursaeidesfahani, M. Ramdin, I.G. Economou, O.A. Moultos, D. Dubbeldam, T.J.H. Vlugt, Computation of partial molar properties using continuous fractional component Monte Carlo. Molecular Phys. 116(21–22), 3331–3344 (2018)CrossRef
19.
Zurück zum Zitat M. Decker, I. Staude, Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18(10), 103001 (2016) M. Decker, I. Staude, Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18(10), 103001 (2016)
20.
Zurück zum Zitat N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Physica Polonica-Ser. A General Phys. 116(4), 585 (2009) N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Physica Polonica-Ser. A General Phys. 116(4), 585 (2009)
21.
Zurück zum Zitat S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010) S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010)
22.
Zurück zum Zitat P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef
23.
Zurück zum Zitat J.L.H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S.L.-C. Hsu, T.-L. Li, Transparent high refractive index nanocomposite thin films. Mater. Lett. 61(14–15), 2908–2910 (2007)CrossRef J.L.H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S.L.-C. Hsu, T.-L. Li, Transparent high refractive index nanocomposite thin films. Mater. Lett. 61(14–15), 2908–2910 (2007)CrossRef
24.
Zurück zum Zitat S. Lee, H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, U. Paik, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J. Mater. Chem. 18(15), 1751–1755 (2008)CrossRef S. Lee, H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, U. Paik, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J. Mater. Chem. 18(15), 1751–1755 (2008)CrossRef
25.
Zurück zum Zitat C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003)CrossRef C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003)CrossRef
26.
Zurück zum Zitat C. Lü, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, J. Shen, Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J. Mater. Chem. 13(9), 2189–2195 (2003)CrossRef C. Lü, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, J. Shen, Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J. Mater. Chem. 13(9), 2189–2195 (2003)CrossRef
27.
Zurück zum Zitat C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17(9), 2448–2454 (2005)CrossRef C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17(9), 2448–2454 (2005)CrossRef
28.
Zurück zum Zitat C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–2901 (2009)CrossRef C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–2901 (2009)CrossRef
29.
Zurück zum Zitat R.J. Nussbaumer, W.R. Caseri, P. Smith, T. Tervoort, Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromolecular Mater. Eng. 288(1), 44–49 (2003) R.J. Nussbaumer, W.R. Caseri, P. Smith, T. Tervoort, Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromolecular Mater. Eng. 288(1), 44–49 (2003)
30.
Zurück zum Zitat D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65(19) (2002) D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65(19) (2002)
31.
Zurück zum Zitat C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B 84(1–2), 219–227 (2006)CrossRef C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B 84(1–2), 219–227 (2006)CrossRef
32.
Zurück zum Zitat E. Ospadov, J. Tao, V.N. Staroverov, J.P. Perdew, Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn-Sham potential. Proc. Natl. Acad. Sci. 115(50), E11578–E11585 (2018)CrossRef E. Ospadov, J. Tao, V.N. Staroverov, J.P. Perdew, Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn-Sham potential. Proc. Natl. Acad. Sci. 115(50), E11578–E11585 (2018)CrossRef
33.
Zurück zum Zitat M. Lax, Multiple scattering of waves. Rev. Modern Phys. 23(4), 287–310 (1951)CrossRef M. Lax, Multiple scattering of waves. Rev. Modern Phys. 23(4), 287–310 (1951)CrossRef
34.
Zurück zum Zitat D. Werdehausen, I. Staude, S. Burger, J. Petschulat, T. Scharf, T. Pertsch, M. Decker, Design rules for customizable optical materials based on nanocomposites. Opt. Mater. Exp. 8(11), 3456 (2018) D. Werdehausen, I. Staude, S. Burger, J. Petschulat, T. Scharf, T. Pertsch, M. Decker, Design rules for customizable optical materials based on nanocomposites. Opt. Mater. Exp. 8(11), 3456 (2018)
35.
Zurück zum Zitat Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in White Paper (2014) Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in White Paper (2014)
36.
Zurück zum Zitat D. Russel, A. Stabell. Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016) D. Russel, A. Stabell. Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016)
37.
Zurück zum Zitat Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014) Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014)
Metadaten
Titel
Design of Bulk Optical Nanocomposites
verfasst von
Daniel Werdehausen
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-75684-0_3

Neuer Inhalt