Skip to main content

2021 | OriginalPaper | Buchkapitel

4. Nanocomposites as Tunable Optical Materials

verfasst von : Daniel Werdehausen

Erschienen in: Nanocomposites as Next-Generation Optical Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the previous chapter, I have shown that nanocomposites can be used as bulk optical materials. However, this is only possible in the homogeneous regime, which, for applications in the visible spectral range, is reached for particle sizes below 4 nm. The main degrees of freedom that remain available for the design of optical nanocomposites are hence only the constituent materials (host and nanoparticles) and their respective volume fractions. Therefore, the key question is whether significant benefits over conventional materials can be achieved with these degrees of freedom. To answer this question, I, in this chapter, investigate what range of optical properties can be achieved with nanocomposites in the homogeneous regime. Since I have already shown that the Maxwell-Garnett-Mie effective medium theory (EMT) is an accurate tool for the design of nanocomposites in the homogeneous regime, I first use this EMT to investigate the general potential of optical nanocomposites for a wide range of different materials. Subsequently, I present experimental data for specific materials and optical components to confirm these general findings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Optica 6(8), 1031 (2019) D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Optica 6(8), 1031 (2019)
2.
Zurück zum Zitat K. Weber, D. Werdehausen, P. Koenig, S. Thiele, M. Schmid, M. Decker, P.W. De Oliveira, A. Herkommer, H. Giessen, Tailored nanocomposites for 3D printed micro-optics. Opt. Mater. Exp. 10(10), 2345 ((in press)) K. Weber, D. Werdehausen, P. Koenig, S. Thiele, M. Schmid, M. Decker, P.W. De Oliveira, A. Herkommer, H. Giessen, Tailored nanocomposites for 3D printed micro-optics. Opt. Mater. Exp. 10(10), 2345 ((in press))
3.
Zurück zum Zitat N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Physica Polonica-Ser. A General Phys. 116(4), 585 (2009) N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Physica Polonica-Ser. A General Phys. 116(4), 585 (2009)
4.
Zurück zum Zitat N. Sultanova, S. Kasarova, I. Nikolov, Application of optical polymers in lens design, in AIP Conference Proceedings, vol. 1722.1 (2016), p. 230003 N. Sultanova, S. Kasarova, I. Nikolov, Application of optical polymers in lens design, in AIP Conference Proceedings, vol. 1722.1 (2016), p. 230003
5.
Zurück zum Zitat N. Sultanova, S. Kasarova, I. Nikolov, Advanced applications of optical polymers. Bulgarian J. Phys. 43(3), 243–250 (2016) N. Sultanova, S. Kasarova, I. Nikolov, Advanced applications of optical polymers. Bulgarian J. Phys. 43(3), 243–250 (2016)
6.
Zurück zum Zitat P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49(16), D157–D176 (2010) P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49(16), D157–D176 (2010)
7.
Zurück zum Zitat H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)CrossRef H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)CrossRef
8.
Zurück zum Zitat P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef
9.
Zurück zum Zitat V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)CrossRef V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)CrossRef
10.
Zurück zum Zitat T. Gissibl, S. Wagner, J. Sykora, M. Schmid, H. Giessen, Refractive index measurements of photo-resists for three-dimensional direct laser writing. Opt. Mater. Exp. 7(7), 2293–2298 (2017)CrossRef T. Gissibl, S. Wagner, J. Sykora, M. Schmid, H. Giessen, Refractive index measurements of photo-resists for three-dimensional direct laser writing. Opt. Mater. Exp. 7(7), 2293–2298 (2017)CrossRef
11.
Zurück zum Zitat T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 10(8), 554 (2016) T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 10(8), 554 (2016)
12.
Zurück zum Zitat S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, A.M. Herkommer, 3D-printed eagle eye: Compound microlens system for foveated imaging. Sci. Adv. 3(2), e1602655 (2017) S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, A.M. Herkommer, 3D-printed eagle eye: Compound microlens system for foveated imaging. Sci. Adv. 3(2), e1602655 (2017)
13.
Zurück zum Zitat S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses. Opt. Exp. 27(24), 35621 (2019) S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses. Opt. Exp. 27(24), 35621 (2019)
14.
Zurück zum Zitat M. Schmid, S. Thiele, A. Herkommer, H. Giessen, Three-dimensional direct laser written achromatic axicons and multi-component microlenses. Opt. Lett. 43(23), 5837–5840 (2018)CrossRef M. Schmid, S. Thiele, A. Herkommer, H. Giessen, Three-dimensional direct laser written achromatic axicons and multi-component microlenses. Opt. Lett. 43(23), 5837–5840 (2018)CrossRef
15.
Zurück zum Zitat M. Schmid, D. Ludescher, H. Giessen, Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Opt. Mater. Exp. 9(12), 4564–4577 (2019)CrossRef M. Schmid, D. Ludescher, H. Giessen, Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Opt. Mater. Exp. 9(12), 4564–4577 (2019)CrossRef
16.
Zurück zum Zitat K. Weber, F. Hütt, S. Thiele, T. Gissibl, A. Herkommer, H. Giessen, Single mode fiber based delivery of OAM light by 3D direct laser writing. Opt. Exp. 25(17), 19672–19679 (2017)CrossRef K. Weber, F. Hütt, S. Thiele, T. Gissibl, A. Herkommer, H. Giessen, Single mode fiber based delivery of OAM light by 3D direct laser writing. Opt. Exp. 25(17), 19672–19679 (2017)CrossRef
17.
Zurück zum Zitat A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A.M. Herkommer, H. Giessen, J. Fick, Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses. ACS Photon. 7(1), 88–97 (2020) A. Asadollahbaik, S. Thiele, K. Weber, A. Kumar, J. Drozella, F. Sterl, A.M. Herkommer, H. Giessen, J. Fick, Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses. ACS Photon. 7(1), 88–97 (2020)
18.
Zurück zum Zitat T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 7(1), 11763 (2016) T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 7(1), 11763 (2016)
19.
Zurück zum Zitat M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7, 543 (2008) M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7, 543 (2008)
20.
Zurück zum Zitat M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444–447 (2004)CrossRef M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444–447 (2004)CrossRef
21.
Zurück zum Zitat M.F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U.W. Paetzold, M. Wegener, All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces. Adv. Opt. Mater. 5(17), 1700164 (2020) M.F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U.W. Paetzold, M. Wegener, All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces. Adv. Opt. Mater. 5(17), 1700164 (2020)
22.
Zurück zum Zitat J. Fischer, M. Wegener, Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev. 7(1), 22–44 (2020)CrossRef J. Fischer, M. Wegener, Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev. 7(1), 22–44 (2020)CrossRef
23.
Zurück zum Zitat M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7(7), 543–546 (2008)CrossRef M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7(7), 543–546 (2008)CrossRef
24.
Zurück zum Zitat M. Hippler, E.D. Lemma, S. Bertels, E. Blasco, C. Barner-Kowollik, M. Wegener, M. Bastmeyer, 3D scaffolds to study basic cell biology. Adv. Mater. 31(26), 1808110 (2020) M. Hippler, E.D. Lemma, S. Bertels, E. Blasco, C. Barner-Kowollik, M. Wegener, M. Bastmeyer, 3D scaffolds to study basic cell biology. Adv. Mater. 31(26), 1808110 (2020)
25.
Zurück zum Zitat T. Frenzel, M. Kadic, M. Wegener, Three-dimensional mechanical metamaterials with a twist. Sci. 358(6366), 1072 (2017) T. Frenzel, M. Kadic, M. Wegener, Three-dimensional mechanical metamaterials with a twist. Sci. 358(6366), 1072 (2017)
26.
Zurück zum Zitat M. Kadic, T. Frenzel, M. Wegener, When size matters. Nat. Phys. 14(1), 8–9 (2018)CrossRef M. Kadic, T. Frenzel, M. Wegener, When size matters. Nat. Phys. 14(1), 8–9 (2018)CrossRef
27.
Zurück zum Zitat M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, M. Bastmeyer, Controlling the shape of 3D microstructures by temperature and light. Nat. Commun. 10(1), 232 (2019) M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, M. Bastmeyer, Controlling the shape of 3D microstructures by temperature and light. Nat. Commun. 10(1), 232 (2019)
28.
Zurück zum Zitat I. Fernandez-Corbaton, C. Rockstuhl, P. Ziemke, P. Gumbsch, A. Albiez, R. Schwaiger, T. Frenzel, M. Kadic, M. Wegener, New twists of 3D chiral metamaterials. Adv. Mater. 31(26), 1807742 (2020) I. Fernandez-Corbaton, C. Rockstuhl, P. Ziemke, P. Gumbsch, A. Albiez, R. Schwaiger, T. Frenzel, M. Kadic, M. Wegener, New twists of 3D chiral metamaterials. Adv. Mater. 31(26), 1807742 (2020)
29.
Zurück zum Zitat M. Gernhardt, E. Blasco, M. Hippler, J. Blinco, M. Bastmeyer, M. Wegener, H. Frisch, C. Barner-Kowollik, Tailoring the mechanical properties of 3D microstructures using visible light post-manufacturing. Adv. Mater. 31(30), 1901269 (2020) M. Gernhardt, E. Blasco, M. Hippler, J. Blinco, M. Bastmeyer, M. Wegener, H. Frisch, C. Barner-Kowollik, Tailoring the mechanical properties of 3D microstructures using visible light post-manufacturing. Adv. Mater. 31(30), 1901269 (2020)
30.
Zurück zum Zitat L. Yang, A. Münchinger, M. Kadic, V. Hahn, F. Mayer, E. Blasco, C. Barner-Kowollik, M. Wegener, On the schwarzschild effect in 3D two-photon laser lithography. Adv. Opt. Mater. 7(22), 1901040 (2020) L. Yang, A. Münchinger, M. Kadic, V. Hahn, F. Mayer, E. Blasco, C. Barner-Kowollik, M. Wegener, On the schwarzschild effect in 3D two-photon laser lithography. Adv. Opt. Mater. 7(22), 1901040 (2020)
31.
Zurück zum Zitat T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frülich, T. Kennerknecht, C. Eberl, M. Thiel, M. Wegener, Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24(20), 2710–2714 (2020) T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frülich, T. Kennerknecht, C. Eberl, M. Thiel, M. Wegener, Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24(20), 2710–2714 (2020)
32.
Zurück zum Zitat S. Thiele, A. Herkommer, 3D-printed microoptics by femtosecond direct laser writing, in 3D Printing of Optical Components, ed. by A. Heinrich (Springer International Publishing, Cham, 2021), pp. 239–262 S. Thiele, A. Herkommer, 3D-printed microoptics by femtosecond direct laser writing, in 3D Printing of Optical Components, ed. by A. Heinrich (Springer International Publishing, Cham, 2021), pp. 239–262
33.
Zurück zum Zitat M. Fateri, A. Gebhardt, Introduction to additive manufacturing, in 3D Printing of Optical Components, ed. by A. Heinrich (Springer International Publishing, Cham, 2021), pp. 1–22 M. Fateri, A. Gebhardt, Introduction to additive manufacturing, in 3D Printing of Optical Components, ed. by A. Heinrich (Springer International Publishing, Cham, 2021), pp. 1–22
34.
Zurück zum Zitat Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in White Paper (2014) Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in White Paper (2014)
35.
Zurück zum Zitat D. Russel, A. Stabell, Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016) D. Russel, A. Stabell, Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016)
36.
Zurück zum Zitat Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014) Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014)
37.
Zurück zum Zitat Schott, Optical Glass 2020. Technical report Schott AG (2020) Schott, Optical Glass 2020. Technical report Schott AG (2020)
Metadaten
Titel
Nanocomposites as Tunable Optical Materials
verfasst von
Daniel Werdehausen
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-75684-0_4

Neuer Inhalt