Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Daniel Werdehausen

Erschienen in: Nanocomposites as Next-Generation Optical Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, I give an introduction into the research fields of nanostructured optical materials and provide the key research questions around which this book is structured. These research questions are:
1)
Can nanocomposites be used as bulk optical materials? And, if so, how must they be designed? In addition, what are the fundamental limits of the concept of an effective refractive index?
 
2)
What is the potential of nanocomposites as optical materials? More specifically, what properties can be achieved? And are effective medium theories accurate tools that can predict their properties?
 
3)
Do nanocomposites allow for the design of highly efficient diffractive optical elements for broadband applications? And, if so, are such devices suitable for high-numerical-aperture imaging systems? In addition, can general concepts for how broadband diffractive optical elements must be designed be developed?
 
4)
Can nanocomposites provide significant benefits for optical systems that outweigh their increased complexity? And, if so, what are potential applications?
 

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Schaming, H. Remita, Nanotechnology: from the ancient time to nowadays. Found. Chem. 17(3), 187–205 (2015)CrossRef D. Schaming, H. Remita, Nanotechnology: from the ancient time to nowadays. Found. Chem. 17(3), 187–205 (2015)CrossRef
2.
Zurück zum Zitat R.H. Brill, N.D. Cahill, A red opaque glass from sardis and some thoughts on red opaques in general. J. Glass Stud. 30, 16–27 (1988) R.H. Brill, N.D. Cahill, A red opaque glass from sardis and some thoughts on red opaques in general. J. Glass Stud. 30, 16–27 (1988)
3.
Zurück zum Zitat R.J. Gettens, Maya blue: an unsolved problem in ancient pigments. Am. Antiquity 27(4), 557–564 (2017) R.J. Gettens, Maya blue: an unsolved problem in ancient pigments. Am. Antiquity 27(4), 557–564 (2017)
4.
Zurück zum Zitat M.Sánchez del Río, A. Doménech, M.T. Doménech-Carbó, M.L. Vázquez de Agredos Pascual, M. Suárez, E. García-Romero, Chapter 18—the maya blue pigment, in Developments in Clay Science, vol. 3, ed by E. Galàn, A. Singer (Elsevier, 2011), pp. 453–481 M.Sánchez del Río, A. Doménech, M.T. Doménech-Carbó, M.L. Vázquez de Agredos Pascual, M. Suárez, E. García-Romero, Chapter 18—the maya blue pigment, in Developments in Clay Science, vol. 3, ed by E. Galàn, A. Singer (Elsevier, 2011), pp. 453–481
5.
Zurück zum Zitat G. Chiari, R. Giustetto, J. Druzik, E. Doehne, G. Ricchiardi, Pre-columbian nanotechnology: reconciling the mysteries of the maya blue pigment. Appl. Phys. A 90(1), 3–7 (2007)CrossRef G. Chiari, R. Giustetto, J. Druzik, E. Doehne, G. Ricchiardi, Pre-columbian nanotechnology: reconciling the mysteries of the maya blue pigment. Appl. Phys. A 90(1), 3–7 (2007)CrossRef
6.
Zurück zum Zitat M. Jose-Yacaman, L. Rendon, J. Arenas, M.C. Serra Puche, Maya blue paint: an ancient nanostructured material. Science 273(5272), 223–225 (1996) M. Jose-Yacaman, L. Rendon, J. Arenas, M.C. Serra Puche, Maya blue paint: an ancient nanostructured material. Science 273(5272), 223–225 (1996)
7.
Zurück zum Zitat I. Freestone, N. Meeks, M. Sax, C. Higgitt, The lycurgus cup—a roman nanotechnology. Gold Bull. 40(4), 270–277 (2007) I. Freestone, N. Meeks, M. Sax, C. Higgitt, The lycurgus cup—a roman nanotechnology. Gold Bull. 40(4), 270–277 (2007)
8.
Zurück zum Zitat J. Delgado, M. Vilarigues, A. Ruivo, V. Corregidor, R.C.d. Silva, L.C. Alves. Characterisation of medieval yellow silver stained glass from Convento de Cristo in Tomar. Portugal. Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 269(20), 2383–2388 (2011) J. Delgado, M. Vilarigues, A. Ruivo, V. Corregidor, R.C.d. Silva, L.C. Alves. Characterisation of medieval yellow silver stained glass from Convento de Cristo in Tomar. Portugal. Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 269(20), 2383–2388 (2011)
9.
Zurück zum Zitat J.H. Koo, Fundamentals, Properties, and Applications of Polymer Nanocomposites (Cambridge University Press, Cambridge, 2017) J.H. Koo, Fundamentals, Properties, and Applications of Polymer Nanocomposites (Cambridge University Press, Cambridge, 2017)
10.
Zurück zum Zitat J. Parameswaranpillai, N. Hameed, T. Kurian, Y. Yu, Nanocomposite Materials: Synthesis, Properties and Applications (CRC Press, Boca Raton, 2016) J. Parameswaranpillai, N. Hameed, T. Kurian, Y. Yu, Nanocomposite Materials: Synthesis, Properties and Applications (CRC Press, Boca Raton, 2016)
11.
Zurück zum Zitat S. Gong, H. Ni, L. Jiang, Q. Cheng, Learning from nature: constructing high performance graphene-based nanocomposites. Mater. Today 20(4), 210–219 (2017) S. Gong, H. Ni, L. Jiang, Q. Cheng, Learning from nature: constructing high performance graphene-based nanocomposites. Mater. Today 20(4), 210–219 (2017)
12.
Zurück zum Zitat V.K. Thakur, M.R. Kessler, Self-healing polymer nanocomposite materials: a review. Polymer 69, 369–383 (2015) V.K. Thakur, M.R. Kessler, Self-healing polymer nanocomposite materials: a review. Polymer 69, 369–383 (2015)
13.
Zurück zum Zitat D.V. Szabó, T. Hanemann. Polymer nanocomposites for optical applications, in Advances in Polymer Nanocomposites, ed. by F. Gao (Woodhead Publishing, 2012), pp. 567–604 D.V. Szabó, T. Hanemann. Polymer nanocomposites for optical applications, in Advances in Polymer Nanocomposites, ed. by F. Gao (Woodhead Publishing, 2012), pp. 567–604
14.
Zurück zum Zitat P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley, New York, 2006) P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley, New York, 2006)
15.
Zurück zum Zitat N. Grossiord, J. Loos, O. Regev, C.E. Koning, Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 18(5), 1089–1099 (2006) N. Grossiord, J. Loos, O. Regev, C.E. Koning, Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 18(5), 1089–1099 (2006)
16.
Zurück zum Zitat L.L. Beecroft, C.K. Ober, Nanocomposite materials for optical applications. Chem. Mater. 9(6), 1302–1317 (1997) L.L. Beecroft, C.K. Ober, Nanocomposite materials for optical applications. Chem. Mater. 9(6), 1302–1317 (1997)
17.
Zurück zum Zitat J. Peng, Q. Cheng, High-performance nanocomposites inspired by nature. Adv. Mater. 29(45) (2017) J. Peng, Q. Cheng, High-performance nanocomposites inspired by nature. Adv. Mater. 29(45) (2017)
18.
Zurück zum Zitat O.A. Tertuliano, J.R. Greer, The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 15(11), 1195–1202 (2016)PubMedCrossRef O.A. Tertuliano, J.R. Greer, The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 15(11), 1195–1202 (2016)PubMedCrossRef
19.
Zurück zum Zitat U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015)PubMedCrossRef U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015)PubMedCrossRef
20.
Zurück zum Zitat M.A.S. Azizi Samir, F. Alloin, A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2), 612–626 (2005) M.A.S. Azizi Samir, F. Alloin, A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2), 612–626 (2005)
21.
Zurück zum Zitat C.B. Thompson, S. Chatterjee, L.T.J. Korley, Gradient supramolecular interactions and tunable mechanics in polychaete jaw inspired semi-interpenetrating networks. Eur. Polymer J. 116, 201–209 (2019)CrossRef C.B. Thompson, S. Chatterjee, L.T.J. Korley, Gradient supramolecular interactions and tunable mechanics in polychaete jaw inspired semi-interpenetrating networks. Eur. Polymer J. 116, 201–209 (2019)CrossRef
22.
Zurück zum Zitat M.R. Rogel, H. Qiu, G.A. Ameer, The role of nanocomposites in bone regeneration. J. Mater. Chem. 18(36), 4233–4241 (2008)CrossRef M.R. Rogel, H. Qiu, G.A. Ameer, The role of nanocomposites in bone regeneration. J. Mater. Chem. 18(36), 4233–4241 (2008)CrossRef
23.
Zurück zum Zitat M.R. Shirdar, N. Farajpour, R. Shahbazian-Yassar, T. Shokuhfar, Nanocomposite materials in orthopedic applications. Frontiers Chem. Sci. Eng. 13(1), 1–13 (2019)CrossRef M.R. Shirdar, N. Farajpour, R. Shahbazian-Yassar, T. Shokuhfar, Nanocomposite materials in orthopedic applications. Frontiers Chem. Sci. Eng. 13(1), 1–13 (2019)CrossRef
24.
Zurück zum Zitat N. Dhas, K. Parekh, A. Pandey, R. Kudarha, S. Mutalik, T. Mehta, Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J. Controlled Release 308, 130–161 (2019)CrossRef N. Dhas, K. Parekh, A. Pandey, R. Kudarha, S. Mutalik, T. Mehta, Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J. Controlled Release 308, 130–161 (2019)CrossRef
25.
Zurück zum Zitat R.J.B. Pinto, M. Nasirpour, J. Carrola, H. Oliveira, C.S.R. Freire, I.F. Duarte, A.M. Grumezescu, Chapter 9—-Antimicrobial properties and therapeutic applications of silver nanoparticles and nanocomposites, in Antimicrobial Nanoarchitectonics (Elsevier, 2017), pp. 223–259 R.J.B. Pinto, M. Nasirpour, J. Carrola, H. Oliveira, C.S.R. Freire, I.F. Duarte, A.M. Grumezescu, Chapter 9—-Antimicrobial properties and therapeutic applications of silver nanoparticles and nanocomposites, in Antimicrobial Nanoarchitectonics (Elsevier, 2017), pp. 223–259
26.
Zurück zum Zitat P.P.D. Kondiah, Y.E. Choonara, P.J. Kondiah, T. Marimuthu, P. Kumar, L.C. du Toit, G. Modi, V. Pillay, Inamuddin, A.M. Asiri, A. Mohammad, 17—Nanocomposites for therapeutic application in multiple sclerosis, in Applications of Nanocomposite Materials in Drug Delivery (Woodhead Publishing, 2018), pp. 391–408 P.P.D. Kondiah, Y.E. Choonara, P.J. Kondiah, T. Marimuthu, P. Kumar, L.C. du Toit, G. Modi, V. Pillay, Inamuddin, A.M. Asiri, A. Mohammad, 17—Nanocomposites for therapeutic application in multiple sclerosis, in Applications of Nanocomposite Materials in Drug Delivery (Woodhead Publishing, 2018), pp. 391–408
27.
Zurück zum Zitat G. Sandri, M. Bonferoni, S. Rossi, F. Ferrari, C. Aguzzi, C. Viseras, C. Caramella, 19—Clay minerals for tissue regeneration, repair, and engineering, in Wound Healing Biomaterials, ed. by M.S. Ågren (Woodhead Publishing, 2016), pp. 385–402 G. Sandri, M. Bonferoni, S. Rossi, F. Ferrari, C. Aguzzi, C. Viseras, C. Caramella, 19—Clay minerals for tissue regeneration, repair, and engineering, in Wound Healing Biomaterials, ed. by M.S. Ågren (Woodhead Publishing, 2016), pp. 385–402
28.
Zurück zum Zitat J.-W. Rhim, H.-M. Park, C.-S. Ha, Bio-nanocomposites for food packaging applications. Progress Polymer Sci. 38(10–11), 1629–1652 (2013)CrossRef J.-W. Rhim, H.-M. Park, C.-S. Ha, Bio-nanocomposites for food packaging applications. Progress Polymer Sci. 38(10–11), 1629–1652 (2013)CrossRef
29.
Zurück zum Zitat Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U. S. A. 111(47), 16676–81 (2014) Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U. S. A. 111(47), 16676–81 (2014)
30.
Zurück zum Zitat S. Ansari, E.P. Giannelis, Functionalized graphene sheet-Poly(vinylidene fluoride) conductive nanocomposites. J. Polymer Sci. Part B: Polymer Phys. 47(9), 888–897 (2009)CrossRef S. Ansari, E.P. Giannelis, Functionalized graphene sheet-Poly(vinylidene fluoride) conductive nanocomposites. J. Polymer Sci. Part B: Polymer Phys. 47(9), 888–897 (2009)CrossRef
31.
Zurück zum Zitat Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95(2), 525–532 (1991)CrossRef Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95(2), 525–532 (1991)CrossRef
32.
Zurück zum Zitat T. Tanaka, Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 12(5), 914–928 (2005)CrossRef T. Tanaka, Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 12(5), 914–928 (2005)CrossRef
33.
Zurück zum Zitat K. Wang et al., Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun. 10(1), 3985 (2019) K. Wang et al., Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun. 10(1), 3985 (2019)
34.
Zurück zum Zitat J. Musil, Hard and superhard nanocomposite coatings. Surface Coatings Technol. 125(1–3), 322–330 (2000)CrossRef J. Musil, Hard and superhard nanocomposite coatings. Surface Coatings Technol. 125(1–3), 322–330 (2000)CrossRef
35.
Zurück zum Zitat Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H.U. Li, E. Iagodkine, A. Haque, L.-Q. Chen, T.N. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015)PubMedCrossRef Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H.U. Li, E. Iagodkine, A. Haque, L.-Q. Chen, T.N. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576–579 (2015)PubMedCrossRef
36.
Zurück zum Zitat A.J. Crosby, J.-Y. Lee, polymer nanocomposites: the nano effect on mechanical properties. Polymer Rev. 47(2), 217–229 (2007) A.J. Crosby, J.-Y. Lee, polymer nanocomposites: the nano effect on mechanical properties. Polymer Rev. 47(2), 217–229 (2007)
37.
Zurück zum Zitat G. Bogdanic, A. Kuzmić. Definitions of terms related to polymer blends, composites, and multiphase polymeric materials, VII.1. Kemija u Industriji 58 (2009) G. Bogdanic, A. Kuzmić. Definitions of terms related to polymer blends, composites, and multiphase polymeric materials, VII.1. Kemija u Industriji 58 (2009)
38.
Zurück zum Zitat G. Garnweitner, L.M. Goldenberg, O.V. Sakhno, M. Antonietti, M. Niederberger, J. Stumpe, Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography. Small 3(9), 1626–1632 (2007) G. Garnweitner, L.M. Goldenberg, O.V. Sakhno, M. Antonietti, M. Niederberger, J. Stumpe, Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography. Small 3(9), 1626–1632 (2007)
39.
Zurück zum Zitat A. Chatterjee, D. Chakravorty, Glass-metal nanocomposite synthesis by metal organic route. J. Phys. D: Appl. Phys. 22(9), 1386–1392 (1989)CrossRef A. Chatterjee, D. Chakravorty, Glass-metal nanocomposite synthesis by metal organic route. J. Phys. D: Appl. Phys. 22(9), 1386–1392 (1989)CrossRef
40.
Zurück zum Zitat S. Kubo, A. Diaz, Y. Tang, T.S. Mayer, I.C. Khoo, T.E. Mallouk, Tunability of the refractive index of gold nanoparticle dispersions. Nano Lett. 7(11), 3418–3423 (2007)PubMedCrossRef S. Kubo, A. Diaz, Y. Tang, T.S. Mayer, I.C. Khoo, T.E. Mallouk, Tunability of the refractive index of gold nanoparticle dispersions. Nano Lett. 7(11), 3418–3423 (2007)PubMedCrossRef
41.
Zurück zum Zitat J.-G. Liu, M. Ueda, High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 19(47), 8907–8919 (2009)CrossRef J.-G. Liu, M. Ueda, High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 19(47), 8907–8919 (2009)CrossRef
42.
Zurück zum Zitat H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surface Sci. 258(22), 8564–8569 (2012)CrossRef H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surface Sci. 258(22), 8564–8569 (2012)CrossRef
43.
Zurück zum Zitat C. Lü, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, J. Shen, Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J. Mater. Chem. 13(9), 2189–2195 (2003)CrossRef C. Lü, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, J. Shen, Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J. Mater. Chem. 13(9), 2189–2195 (2003)CrossRef
44.
Zurück zum Zitat N. Nakashima, High refractive index glass compositions. Patent US4082427 (1978) N. Nakashima, High refractive index glass compositions. Patent US4082427 (1978)
45.
Zurück zum Zitat Y. Tanaka, K. Hosokawa, K. Takeuchi, Optical composite material and optical element. Patent US8637588 (2014) Y. Tanaka, K. Hosokawa, K. Takeuchi, Optical composite material and optical element. Patent US8637588 (2014)
46.
Zurück zum Zitat H. Ukuda, Optical material, and, optical element, optical system and laminated diffractive optical element using it. Patent US20050110830 (2005) H. Ukuda, Optical material, and, optical element, optical system and laminated diffractive optical element using it. Patent US20050110830 (2005)
47.
Zurück zum Zitat R. Schnell, W. Beier, M. Winkler-Trudewig, Transparenter duroplastischer Komposit aus organischer Matrix mit nanoskaligen Glaspartikeln, Verfahren zur Herstellung desselben und dessen Verwendung. Patent DE 10 2007 017 651 (2007) R. Schnell, W. Beier, M. Winkler-Trudewig, Transparenter duroplastischer Komposit aus organischer Matrix mit nanoskaligen Glaspartikeln, Verfahren zur Herstellung desselben und dessen Verwendung. Patent DE 10 2007 017 651 (2007)
48.
Zurück zum Zitat S. Monickam, D. Peters, G. Cooper, Z. Chen. Nanocomposite formulations for optical applications. Patent US20180223107 (2018) S. Monickam, D. Peters, G. Cooper, Z. Chen. Nanocomposite formulations for optical applications. Patent US20180223107 (2018)
49.
Zurück zum Zitat A. Garito, Y.-L. Hsiao, R. Gao, J. Zhu, B. Thomas, A. Panackal, J. Sharma, R. Gao. Optical polymer nanocomposites. Patent US20030175004 (2003) A. Garito, Y.-L. Hsiao, R. Gao, J. Zhu, B. Thomas, A. Panackal, J. Sharma, R. Gao. Optical polymer nanocomposites. Patent US20030175004 (2003)
50.
Zurück zum Zitat M. Feuillade, G. Cantagrel. Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article. Patent US20150203710 (2015) M. Feuillade, G. Cantagrel. Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article. Patent US20150203710 (2015)
51.
Zurück zum Zitat G. Cooper, W. Xu, Z. Chen, High refractive index nanocomposite layer. Patent US10144842. 2018 G. Cooper, W. Xu, Z. Chen, High refractive index nanocomposite layer. Patent US10144842. 2018
52.
Zurück zum Zitat P.T. Chung, C.T. Yang, S.H. Wang, C.W. Chen, A.S. Chiang, C.-Y. Liu, ZrO2/epoxy nanocomposite for LED encapsulation. Mater. Chem. Phys. 136(2–3), 868–876 (2012)CrossRef P.T. Chung, C.T. Yang, S.H. Wang, C.W. Chen, A.S. Chiang, C.-Y. Liu, ZrO2/epoxy nanocomposite for LED encapsulation. Mater. Chem. Phys. 136(2–3), 868–876 (2012)CrossRef
53.
Zurück zum Zitat P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef
54.
Zurück zum Zitat S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010) S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010)
55.
Zurück zum Zitat C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–2901 (2009)CrossRef C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–2901 (2009)CrossRef
56.
Zurück zum Zitat S. Lee, H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, U. Paik, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J. Mater. Chem. 18(15), 1751–1755 (2008)CrossRef S. Lee, H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, U. Paik, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J. Mater. Chem. 18(15), 1751–1755 (2008)CrossRef
57.
Zurück zum Zitat J.L.H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S.L.-C. Hsu, T.-L. Li, Transparent high refractive index nanocomposite thin films. Mater. Lett. 61(14–15), 2908–2910 (2007)CrossRef J.L.H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S.L.-C. Hsu, T.-L. Li, Transparent high refractive index nanocomposite thin films. Mater. Lett. 61(14–15), 2908–2910 (2007)CrossRef
58.
Zurück zum Zitat H.K. Schmidt, Sol-gel nanocomposites as functional optical materials, in Sol-Gel Optics II, ed. by J.D. Mackenzie, vol. 1758 (International Society for Optics and Photonics. SPIE, 1992), pp. 396–402 H.K. Schmidt, Sol-gel nanocomposites as functional optical materials, in Sol-Gel Optics II, ed. by J.D. Mackenzie, vol. 1758 (International Society for Optics and Photonics. SPIE, 1992), pp. 396–402
59.
Zurück zum Zitat C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003)CrossRef C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003)CrossRef
60.
Zurück zum Zitat R.J. Nussbaumer, W.R. Caseri, P. Smith, T. Tervoort, Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromolecular Mater. Eng. 288(1), 44–49 (2003) R.J. Nussbaumer, W.R. Caseri, P. Smith, T. Tervoort, Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromolecular Mater. Eng. 288(1), 44–49 (2003)
61.
Zurück zum Zitat A. Biswas, O.C. Aktas, J. Kanzow, U. Saeed, T. Strunskus, V. Zaporojtchenko, F. Faupel, Polymer-metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition. Mater. Lett. 58(9), 1530–1534 (2004)CrossRef A. Biswas, O.C. Aktas, J. Kanzow, U. Saeed, T. Strunskus, V. Zaporojtchenko, F. Faupel, Polymer-metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition. Mater. Lett. 58(9), 1530–1534 (2004)CrossRef
62.
Zurück zum Zitat C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17(9), 2448–2454 (2005)CrossRef C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17(9), 2448–2454 (2005)CrossRef
63.
Zurück zum Zitat B. Karthikeyan, M. Anija, C.S. Suchand Sandeep, T.M. Muhammad Nadeer, R. Philip, Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature. Opt. Commun. 281(10), 2933–2937 (2008) B. Karthikeyan, M. Anija, C.S. Suchand Sandeep, T.M. Muhammad Nadeer, R. Philip, Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature. Opt. Commun. 281(10), 2933–2937 (2008)
64.
Zurück zum Zitat B. Karthikeyan, M. Anija, R. Philip, In situ synthesis and nonlinear optical properties of Au:Ag nanocomposite polymer films. Appl. Phys. Lett. 88(5), 053104 (2006) B. Karthikeyan, M. Anija, R. Philip, In situ synthesis and nonlinear optical properties of Au:Ag nanocomposite polymer films. Appl. Phys. Lett. 88(5), 053104 (2006)
65.
Zurück zum Zitat A.A. Scalisi, G. Compagnini, L. D’Urso, O. Puglisi, Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration. Appl. Surface Sci. 226(1–3), 237–241 (2004)CrossRef A.A. Scalisi, G. Compagnini, L. D’Urso, O. Puglisi, Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration. Appl. Surface Sci. 226(1–3), 237–241 (2004)CrossRef
66.
Zurück zum Zitat R.W. Boyd, R.J. Gehr, G.L. Fischer, J.E. Sipe, Nonlinear optical properties of nanocomposite materials. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 5(5), 505–512 (1996)CrossRef R.W. Boyd, R.J. Gehr, G.L. Fischer, J.E. Sipe, Nonlinear optical properties of nanocomposite materials. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 5(5), 505–512 (1996)CrossRef
67.
Zurück zum Zitat X. Zeng, D. Bergman, P. Hui, D. Stroud, Effective-medium theory for weakly nonlinear composites. Phys. Rev. B 38(15), 10970 (1988) X. Zeng, D. Bergman, P. Hui, D. Stroud, Effective-medium theory for weakly nonlinear composites. Phys. Rev. B 38(15), 10970 (1988)
68.
Zurück zum Zitat G. Albrecht, M. Hentschel, S. Kaiser, H. Giessen, Hybrid Organic-Plasmonic Nanoantennas with Enhanced Third-Harmonic Generation. ACS Omega 2(6), 2577–2582 (2017)PubMedPubMedCentralCrossRef G. Albrecht, M. Hentschel, S. Kaiser, H. Giessen, Hybrid Organic-Plasmonic Nanoantennas with Enhanced Third-Harmonic Generation. ACS Omega 2(6), 2577–2582 (2017)PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49(16), D157–D176 (2010) P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49(16), D157–D176 (2010)
70.
Zurück zum Zitat Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in White Paper (2014) Z. Chen, Pixelligent zirconia nano-crystals for OLED applications, in White Paper (2014)
71.
Zurück zum Zitat D. Russel, Stabell, Scaling-up Pixelligent nanocrystal dispersions, in White Paper (2016) D. Russel, Stabell, Scaling-up Pixelligent nanocrystal dispersions, in White Paper (2016)
72.
Zurück zum Zitat Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014) Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014)
73.
Zurück zum Zitat C.F. Bohren, Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmospheric Sci. 43(5), 468–475 (1986)CrossRef C.F. Bohren, Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmospheric Sci. 43(5), 468–475 (1986)CrossRef
74.
Zurück zum Zitat C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008) C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008)
75.
Zurück zum Zitat L.L. Foldy, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67(3–4), 107–119 (1945) L.L. Foldy, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67(3–4), 107–119 (1945)
76.
Zurück zum Zitat M. Lax, Multiple scattering of waves. Rev. Modern Phys. 23(4), 287–310 (1951)CrossRef M. Lax, Multiple scattering of waves. Rev. Modern Phys. 23(4), 287–310 (1951)CrossRef
77.
Zurück zum Zitat M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef
78.
Zurück zum Zitat M.I. Mishchenko, L.D. Travis, T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109(1), 16–21 (1994)CrossRef M.I. Mishchenko, L.D. Travis, T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109(1), 16–21 (1994)CrossRef
79.
Zurück zum Zitat M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002) M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002)
80.
Zurück zum Zitat A. Macke, M.I. Mishchenko, K. Muinonen, B.E. Carlson, Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method. Opt. Lett. 20(19), 1934–1936 (1995)PubMedCrossRef A. Macke, M.I. Mishchenko, K. Muinonen, B.E. Carlson, Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method. Opt. Lett. 20(19), 1934–1936 (1995)PubMedCrossRef
81.
Zurück zum Zitat Z. Cui, Y. Han, Q. Xu, Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams. J. Opt. Soc. Am. A 28(11), 2200–2208 (2011)CrossRef Z. Cui, Y. Han, Q. Xu, Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams. J. Opt. Soc. Am. A 28(11), 2200–2208 (2011)CrossRef
82.
Zurück zum Zitat L. Pattelli, A. Egel, U. Lemmer, D.S. Wiersma, Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5(9), 1037–1045 (2018)CrossRef L. Pattelli, A. Egel, U. Lemmer, D.S. Wiersma, Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5(9), 1037–1045 (2018)CrossRef
83.
Zurück zum Zitat V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)CrossRef V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)CrossRef
84.
Zurück zum Zitat P. Mallet, C.-A. Guérin, A. Sentenac, Maxwell-Garnett mixing rule in the presence of multiple scattering: derivation and accuracy. Phys. Rev. B 72(1), 014205 (2005) P. Mallet, C.-A. Guérin, A. Sentenac, Maxwell-Garnett mixing rule in the presence of multiple scattering: derivation and accuracy. Phys. Rev. B 72(1), 014205 (2005)
85.
Zurück zum Zitat W.T. Doyle, Optical properties of a suspension of metal spheres. Phys. Rev. B 39(14), 9852 (1989) W.T. Doyle, Optical properties of a suspension of metal spheres. Phys. Rev. B 39(14), 9852 (1989)
86.
Zurück zum Zitat R. Ruppin, Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182(4), 273–279 (2000)CrossRef R. Ruppin, Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182(4), 273–279 (2000)CrossRef
87.
Zurück zum Zitat T.C. Choy, Effective Medium Theory: Principles and Applications, vol. 165 (Oxford University Press, Oxford, 2015) T.C. Choy, Effective Medium Theory: Principles and Applications, vol. 165 (Oxford University Press, Oxford, 2015)
88.
Zurück zum Zitat A. Andryieuski, S. Ha, A.A. Sukhorukov, Y.S. Kivshar, A.V. Lavrinenko, Bloch-mode analysis for retrieving effective parameters of metamaterials. Phys. Rev. B 86(3) (2012) A. Andryieuski, S. Ha, A.A. Sukhorukov, Y.S. Kivshar, A.V. Lavrinenko, Bloch-mode analysis for retrieving effective parameters of metamaterials. Phys. Rev. B 86(3) (2012)
89.
Zurück zum Zitat D. Aspnes, Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys. 50(8), 704–709 (1982)CrossRef D. Aspnes, Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys. 50(8), 704–709 (1982)CrossRef
90.
Zurück zum Zitat P. Chýlek, V. Srivastava, R.G. Pinnick, R. Wang, Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations. Appl. Opt. 27(12), 2396–2404 (1988)CrossRef P. Chýlek, V. Srivastava, R.G. Pinnick, R. Wang, Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations. Appl. Opt. 27(12), 2396–2404 (1988)CrossRef
91.
Zurück zum Zitat A. Malasi, R. Kalyanaraman, H. Garcia, From Mie to Fresnel through effective medium approximation with multipole contributions. J. Opt. 16(6), 065001 (2014) A. Malasi, R. Kalyanaraman, H. Garcia, From Mie to Fresnel through effective medium approximation with multipole contributions. J. Opt. 16(6), 065001 (2014)
92.
Zurück zum Zitat K. Mnasri, A. Khrabustovskyi, M. Plum, C. Rockstuhl, Retrieving effective material parameters of metamaterials characterized by nonlocal constitutive relations. Phys. Rev B 99(3) (2019) K. Mnasri, A. Khrabustovskyi, M. Plum, C. Rockstuhl, Retrieving effective material parameters of metamaterials characterized by nonlocal constitutive relations. Phys. Rev B 99(3) (2019)
93.
Zurück zum Zitat G.A. Niklasson, C. Granqvist, O. Hunderi, Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt. 20(1), 26–30 (1981)PubMedCrossRef G.A. Niklasson, C. Granqvist, O. Hunderi, Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt. 20(1), 26–30 (1981)PubMedCrossRef
94.
Zurück zum Zitat D. Ruan, L. Zhu, X. Jing, Y. Tian, L. Wang, S. Jin, Validity of scalar diffraction theory and effective medium theory for analysis of a blazed grating microstructure at oblique incidence. Appl. Opt. 53(11), 2357–65 (2014)PubMedCrossRef D. Ruan, L. Zhu, X. Jing, Y. Tian, L. Wang, S. Jin, Validity of scalar diffraction theory and effective medium theory for analysis of a blazed grating microstructure at oblique incidence. Appl. Opt. 53(11), 2357–65 (2014)PubMedCrossRef
95.
Zurück zum Zitat B.T. Schwartz, R. Piestun, Dynamic properties of photonic crystals and their effective refractive index. J. Opt. Soc. Am. B 22(9), 2018–2026 (2005)CrossRef B.T. Schwartz, R. Piestun, Dynamic properties of photonic crystals and their effective refractive index. J. Opt. Soc. Am. B 22(9), 2018–2026 (2005)CrossRef
96.
Zurück zum Zitat D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65(19) (2002) D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65(19) (2002)
97.
Zurück zum Zitat G. Smith, Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure. Opt. Commun. 71(5), 279–284 (1989)CrossRef G. Smith, Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure. Opt. Commun. 71(5), 279–284 (1989)CrossRef
98.
Zurück zum Zitat I. Skryabin, A. Radchik, P. Moses, G. Smith, The consistent application of Maxwell-Garnett effective medium theory to anisotropic composites. Appl. Phys. Lett. 70(17), 2221–2223 (1997)CrossRef I. Skryabin, A. Radchik, P. Moses, G. Smith, The consistent application of Maxwell-Garnett effective medium theory to anisotropic composites. Appl. Phys. Lett. 70(17), 2221–2223 (1997)CrossRef
99.
Zurück zum Zitat K. Mnasri, F.Z. Goffi, M. Plum, C. Rockstuhl, Homogenization of wire media with a general purpose nonlocal constitutive relation. J. Opt. Soc. Am. B 36(8), F99 (2019) K. Mnasri, F.Z. Goffi, M. Plum, C. Rockstuhl, Homogenization of wire media with a general purpose nonlocal constitutive relation. J. Opt. Soc. Am. B 36(8), F99 (2019)
100.
Zurück zum Zitat M. Notomi, Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62(16), 10696 (2000) M. Notomi, Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62(16), 10696 (2000)
101.
Zurück zum Zitat M.V. Rybin, D.S. Filonov, K.B. Samusev, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commun. 6, 10102 (2015) M.V. Rybin, D.S. Filonov, K.B. Samusev, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commun. 6, 10102 (2015)
102.
Zurück zum Zitat J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2011)CrossRef J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2011)CrossRef
103.
Zurück zum Zitat P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, J. Valentine, Realization of an all-dielectric zero-index optical metamaterial. Nat. Photon. 7(10), 791 (2013) P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, J. Valentine, Realization of an all-dielectric zero-index optical metamaterial. Nat. Photon. 7(10), 791 (2013)
104.
Zurück zum Zitat T. Paul, C. Menzel, W. Śmigaj, C. Rockstuhl, P. Lalanne, F. Lederer, Reflection and transmission of light at periodic layered metamaterial films. Phys. Rev. B 84(11) (2011) T. Paul, C. Menzel, W. Śmigaj, C. Rockstuhl, P. Lalanne, F. Lederer, Reflection and transmission of light at periodic layered metamaterial films. Phys. Rev. B 84(11) (2011)
105.
Zurück zum Zitat J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch. “Multipole approach to metamaterials”. Phys. Rev. A 78(4), 043811 (2008) J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch. “Multipole approach to metamaterials”. Phys. Rev. A 78(4), 043811 (2008)
106.
Zurück zum Zitat M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7, 543 (2008) M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7, 543 (2008)
107.
Zurück zum Zitat C. Rockstuhl, C. Menzel, T. Paul, F. Lederer, Homogenization of metamaterials from a Bloch mode perspective, in 2012 International Conference on Electromagnetics in Advanced Applications (2012), pp. 178–181 C. Rockstuhl, C. Menzel, T. Paul, F. Lederer, Homogenization of metamaterials from a Bloch mode perspective, in 2012 International Conference on Electromagnetics in Advanced Applications (2012), pp. 178–181
108.
Zurück zum Zitat C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T.P. Meyrath, H. Giessen, Transition from thin-film to bulk properties of metamaterials. Phys. Rev. B 77(3), 035126 (2008) C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T.P. Meyrath, H. Giessen, Transition from thin-film to bulk properties of metamaterials. Phys. Rev. B 77(3), 035126 (2008)
109.
Zurück zum Zitat C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B 84(1–2), 219–227 (2006)CrossRef C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys. B 84(1–2), 219–227 (2006)CrossRef
110.
Zurück zum Zitat J. Zhou, T. Koschny, M. Kafesaki, C.M. Soukoulis, Negative refractive index response of weakly and strongly coupled optical metamaterials. Phys. Rev B 80(3) (2009) J. Zhou, T. Koschny, M. Kafesaki, C.M. Soukoulis, Negative refractive index response of weakly and strongly coupled optical metamaterials. Phys. Rev B 80(3) (2009)
111.
Zurück zum Zitat G. Shvets, I. Tsukerman, Plasmonics and Plasmonic Metamaterials: Analysis and Applications, vol. 4 (World Scientific, 2012) G. Shvets, I. Tsukerman, Plasmonics and Plasmonic Metamaterials: Analysis and Applications, vol. 4 (World Scientific, 2012)
112.
Zurück zum Zitat S. Wang et al., A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018)PubMedCrossRef S. Wang et al., A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018)PubMedCrossRef
113.
Zurück zum Zitat H. Liang, A. Martins, B.-H.V. Borges, J. Zhou, E.R. Martins, J. Li, T.F. Krauss, High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica 6(12), 1461–1470 (2019)CrossRef H. Liang, A. Martins, B.-H.V. Borges, J. Zhou, E.R. Martins, J. Li, T.F. Krauss, High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica 6(12), 1461–1470 (2019)CrossRef
114.
Zurück zum Zitat M. Decker, I. Staude, Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18(10), 103001 (2016) M. Decker, I. Staude, Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18(10), 103001 (2016)
115.
Zurück zum Zitat M. Decker, I. Staude, M. Falkner, J. Dominguez, D.N. Neshev, I. Brener, T. Pertsch, Y.S. Kivshar, High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3(6), 813–820 (2015)CrossRef M. Decker, I. Staude, M. Falkner, J. Dominguez, D.N. Neshev, I. Brener, T. Pertsch, Y.S. Kivshar, High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3(6), 813–820 (2015)CrossRef
116.
Zurück zum Zitat S.J. Byrnes, A. Lenef, F. Aieta, F. Capasso, Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Exp. 24(5), 5110–5124 (2016)CrossRef S.J. Byrnes, A. Lenef, F. Aieta, F. Capasso, Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Exp. 24(5), 5110–5124 (2016)CrossRef
117.
Zurück zum Zitat W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13(3), 220–226 (2018)PubMedCrossRef W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13(3), 220–226 (2018)PubMedCrossRef
118.
Zurück zum Zitat W.T. Chen, A.Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso, A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10(1), 355 (2019) W.T. Chen, A.Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso, A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10(1), 355 (2019)
119.
Zurück zum Zitat W.T. Chen, A.Y. Zhu, J. Sisler, Y.W. Huang, K.M.A. Yousef, E. Lee, C.W. Qiu, F. Capasso, Broadband achromatic metasurface-refractive optics. Nano Lett. 18(12), 7801–7808 (2018)PubMedCrossRef W.T. Chen, A.Y. Zhu, J. Sisler, Y.W. Huang, K.M.A. Yousef, E. Lee, C.W. Qiu, F. Capasso, Broadband achromatic metasurface-refractive optics. Nano Lett. 18(12), 7801–7808 (2018)PubMedCrossRef
120.
Zurück zum Zitat M. Decker, W.T. Chen, T. Nobis, A.Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, J. Petschulat, Imaging performance of polarization-insensitive metalenses. ACS Photon. (2019) M. Decker, W.T. Chen, T. Nobis, A.Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, J. Petschulat, Imaging performance of polarization-insensitive metalenses. ACS Photon. (2019)
121.
Zurück zum Zitat P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, R. Devlin, Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4(1), 139 (2017) P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, R. Devlin, Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4(1), 139 (2017)
122.
Zurück zum Zitat B. Groever, W.T. Chen, F. Capasso, Meta-lens doublet in the visible region. Nano Lett. 17(8), 4902–4907 (2017)PubMedCrossRef B. Groever, W.T. Chen, F. Capasso, Meta-lens doublet in the visible region. Nano Lett. 17(8), 4902–4907 (2017)PubMedCrossRef
123.
Zurück zum Zitat M. Khorasaninejad, F. Capasso, Metalenses: Versatile multifunctional photonic components. Science 358(6367) (2017) M. Khorasaninejad, F. Capasso, Metalenses: Versatile multifunctional photonic components. Science 358(6367) (2017)
124.
Zurück zum Zitat M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352(6290), 1190–4 (2016)PubMedCrossRef M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352(6290), 1190–4 (2016)PubMedCrossRef
125.
Zurück zum Zitat M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, F. Capasso, Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17(3), 1819–1824 (2017)PubMedCrossRef M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, F. Capasso, Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17(3), 1819–1824 (2017)PubMedCrossRef
126.
Zurück zum Zitat M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16(11), 7229–7234 (2016)PubMedCrossRef M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16(11), 7229–7234 (2016)PubMedCrossRef
127.
Zurück zum Zitat R. Sawant, P. Bhumkar, A.Y. Zhu, P. Ni, F. Capasso, P. Genevet, Mitigating chromatic dispersion with hybrid optical metasurfaces. Adv. Mater. 31(3), e1805555 (2019) R. Sawant, P. Bhumkar, A.Y. Zhu, P. Ni, F. Capasso, P. Genevet, Mitigating chromatic dispersion with hybrid optical metasurfaces. Adv. Mater. 31(3), e1805555 (2019)
128.
Zurück zum Zitat A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4(2), eaap9957 (2018) A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4(2), eaap9957 (2018)
129.
Zurück zum Zitat N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–7 (2011)PubMedCrossRef N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–7 (2011)PubMedCrossRef
130.
Zurück zum Zitat A.Y. Zhu, W.-T. Chen, M. Khorasaninejad, J. Oh, A. Zaidi, I. Mishra, R. C. Devlin, F. Capasso, Ultra-compact visible chiral spectrometer with meta-lenses. APL Photon. 2(3), 036103 (2017) A.Y. Zhu, W.-T. Chen, M. Khorasaninejad, J. Oh, A. Zaidi, I. Mishra, R. C. Devlin, F. Capasso, Ultra-compact visible chiral spectrometer with meta-lenses. APL Photon. 2(3), 036103 (2017)
131.
Zurück zum Zitat P. Lalanne, Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16(10), 2517 (1999) P. Lalanne, Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16(10), 2517 (1999)
132.
Zurück zum Zitat P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23(14), 1081 (1998) P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23(14), 1081 (1998)
133.
Zurück zum Zitat P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999)CrossRef P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999)CrossRef
134.
Zurück zum Zitat P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photon. Rev. 11(3), 1600295 (2017) P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photon. Rev. 11(3), 1600295 (2017)
135.
Zurück zum Zitat P. Lalanne, J.P. Hugonin, P. Chavel, Optical properties of deep lamellar gratings: a coupled bloch-mode insight. J. Lightwave Technol. 24(6), 2442–2449 (2006)CrossRef P. Lalanne, J.P. Hugonin, P. Chavel, Optical properties of deep lamellar gratings: a coupled bloch-mode insight. J. Lightwave Technol. 24(6), 2442–2449 (2006)CrossRef
136.
Zurück zum Zitat M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, Wide-field-angle behavior of blazed-binary gratings in the resonance domain. Opt. Lett. 25(23), 1690 (2000) M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, Wide-field-angle behavior of blazed-binary gratings in the resonance domain. Opt. Lett. 25(23), 1690 (2000)
137.
Zurück zum Zitat C. Ribot, M.-S.L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, Broadband and efficient diffraction. Adv. Opt. Mater. 1(7), 489–493 (2013)CrossRef C. Ribot, M.-S.L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, Broadband and efficient diffraction. Adv. Opt. Mater. 1(7), 489–493 (2013)CrossRef
138.
Zurück zum Zitat C. Sauvan, P. Lalanne, M.-S. L. Lee, Broadband blazing with artificial dielectrics. Opt. Lett. 29(14), 1593 (2004) C. Sauvan, P. Lalanne, M.-S. L. Lee, Broadband blazing with artificial dielectrics. Opt. Lett. 29(14), 1593 (2004)
139.
Zurück zum Zitat S. Larouche, D.R. Smith, Reconciliation of generalized refraction with diffraction theory. Opt. Lett. 37(12), 2391–3 (2012)PubMedCrossRef S. Larouche, D.R. Smith, Reconciliation of generalized refraction with diffraction theory. Opt. Lett. 37(12), 2391–3 (2012)PubMedCrossRef
140.
Zurück zum Zitat C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation New York, 2005) C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation New York, 2005)
141.
Zurück zum Zitat T. Nakai, Diffractive Optical Element. Patent US6587272 (1999) T. Nakai, Diffractive Optical Element. Patent US6587272 (1999)
142.
Zurück zum Zitat A.J. Glass, K.J. Weible, A. Schilling, H.P. Herzig, D.R. Lobb, J.W. Goodman, M. Chang, A.H. Guenther, T. Asakura, Achromatization of the diffraction efficiency of diffractive optical elements, in Proceedings SPIE 3749, 18th Congress of the International Commission for Optics, vol. 3749 (1999), pp. 378–379 A.J. Glass, K.J. Weible, A. Schilling, H.P. Herzig, D.R. Lobb, J.W. Goodman, M. Chang, A.H. Guenther, T. Asakura, Achromatization of the diffraction efficiency of diffractive optical elements, in Proceedings SPIE 3749, 18th Congress of the International Commission for Optics, vol. 3749 (1999), pp. 378–379
143.
Zurück zum Zitat S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses. Opt. Exp. 27(24), 35621 (2019) S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses. Opt. Exp. 27(24), 35621 (2019)
144.
Zurück zum Zitat M.T. Gale, Replication techniques for diffractive optical elements. Microelectron. Eng. 34(3–4), 321–339 (1997)CrossRef M.T. Gale, Replication techniques for diffractive optical elements. Microelectron. Eng. 34(3–4), 321–339 (1997)CrossRef
145.
Zurück zum Zitat T. Nakai, H. Ogawa, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and Micro-Optics (Optical Society of America, 2002), DMA2 T. Nakai, H. Ogawa, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and Micro-Optics (Optical Society of America, 2002), DMA2
146.
Zurück zum Zitat B.H. Kleemann, M. Seesselberg, J. Ruoff, Design concepts for broadband high-efficiency DOEs. J. Eur. Opt. Soc. Rapid Publ. 3 (2008) B.H. Kleemann, M. Seesselberg, J. Ruoff, Design concepts for broadband high-efficiency DOEs. J. Eur. Opt. Soc. Rapid Publ. 3 (2008)
147.
Zurück zum Zitat M. Seesselberg, J. Ruoff, B.H. Kleemann, Diffractive optical element for colour sensor has multiple successive curvatures structure at right angles to extension direction. Patent DE102006007432 (2007) M. Seesselberg, J. Ruoff, B.H. Kleemann, Diffractive optical element for colour sensor has multiple successive curvatures structure at right angles to extension direction. Patent DE102006007432 (2007)
148.
Zurück zum Zitat J.M. Trapp, M. Decker, J. Petschulat, T. Pertsch, T.G. Jabbour, Design of a 2 diopter holographic progressive lens. Opt. Exp. 26(25), 32866–32877 (2018)CrossRef J.M. Trapp, M. Decker, J. Petschulat, T. Pertsch, T.G. Jabbour, Design of a 2 diopter holographic progressive lens. Opt. Exp. 26(25), 32866–32877 (2018)CrossRef
149.
Zurück zum Zitat W.C. Sweatt, Describing holographic optical elements as lenses. J. Opt. Soc. Am. 67(6), 803 (1977) W.C. Sweatt, Describing holographic optical elements as lenses. J. Opt. Soc. Am. 67(6), 803 (1977)
150.
Zurück zum Zitat J.M. Trapp, T.G. Jabbour, G. Kelch, T. Pertsch, M. Decker, Hybrid refractive holographic single vision spectacle lenses. J. Eur. Opt. Soc.-Rapid Publ. 15(1), 14 (2019) J.M. Trapp, T.G. Jabbour, G. Kelch, T. Pertsch, M. Decker, Hybrid refractive holographic single vision spectacle lenses. J. Eur. Opt. Soc.-Rapid Publ. 15(1), 14 (2019)
151.
Zurück zum Zitat G.J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements (Report, Lincoln Laboratory Massachusetts Institute of Technology, 1989) G.J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements (Report, Lincoln Laboratory Massachusetts Institute of Technology, 1989)
152.
Zurück zum Zitat S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon, Imaging with flat optics: metalenses or diffractive lenses? Opt. 6(6), 805 (2019) S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon, Imaging with flat optics: metalenses or diffractive lenses? Opt. 6(6), 805 (2019)
153.
Zurück zum Zitat G. Kim, J.A. Dominguez-Caballero, R. Menon, Design and analysis of multi-wavelength diffractive optics. Opt. Exp. 20(3), 2814–23 (2012)CrossRef G. Kim, J.A. Dominguez-Caballero, R. Menon, Design and analysis of multi-wavelength diffractive optics. Opt. Exp. 20(3), 2814–23 (2012)CrossRef
154.
Zurück zum Zitat N. Mohammad, M. Meem, X. Wan, R. Menon, Full-color, large area, transmissive holograms enabled by multi-level diffractive optics. Sci. Rep. 7(1), 5789 (2017) N. Mohammad, M. Meem, X. Wan, R. Menon, Full-color, large area, transmissive holograms enabled by multi-level diffractive optics. Sci. Rep. 7(1), 5789 (2017)
155.
Zurück zum Zitat P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016) P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016)
156.
Zurück zum Zitat Y. Arieli, S. Noach, S. Ozeri, N. Eisenberg, Design of diffractive optical elements for multiple wavelengths. Appl. Opt. 37(26), 6174 (1998) Y. Arieli, S. Noach, S. Ozeri, N. Eisenberg, Design of diffractive optical elements for multiple wavelengths. Appl. Opt. 37(26), 6174 (1998)
157.
Zurück zum Zitat Y. Arieli, S. Ozeri, N. Eisenberg, S. Noach, Design of a diffractive optical element for wide spectral bandwidth. Opt. Lett. 23(11), 823 (1998) Y. Arieli, S. Ozeri, N. Eisenberg, S. Noach, Design of a diffractive optical element for wide spectral bandwidth. Opt. Lett. 23(11), 823 (1998)
158.
Zurück zum Zitat J.A. Davison, M.J. Simpson, History and development of the apodized diffractive intraocular lens. J. Cataract Refractive Surgery 32(5), 849–58 (2006)CrossRef J.A. Davison, M.J. Simpson, History and development of the apodized diffractive intraocular lens. J. Cataract Refractive Surgery 32(5), 849–58 (2006)CrossRef
159.
Zurück zum Zitat A.A. Kazemi, B. Kress, T. Starner, B.C. Kress, S. Thibault, A review of head-mounted displays (HMD) technologies and applications for consumer electronics, in Proceedings SPIE 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV (2013), p. 87200A A.A. Kazemi, B. Kress, T. Starner, B.C. Kress, S. Thibault, A review of head-mounted displays (HMD) technologies and applications for consumer electronics, in Proceedings SPIE 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV (2013), p. 87200A
160.
Zurück zum Zitat G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov, S.A. Stepanov, Diffractive-refractive correction units for plastic compact zoom lenses. Appl. Opt. 51(20), 4597–604 (2012)PubMedCrossRef G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov, S.A. Stepanov, Diffractive-refractive correction units for plastic compact zoom lenses. Appl. Opt. 51(20), 4597–604 (2012)PubMedCrossRef
161.
Zurück zum Zitat G.I. Greisukh, E.G. Ezhov, I.A. Levin, S.A. Stepanov, Design of achromatic and apochromatic plastic micro-objectives. Appl. Opt. 49(23), 4379–84 (2010)PubMedCrossRef G.I. Greisukh, E.G. Ezhov, I.A. Levin, S.A. Stepanov, Design of achromatic and apochromatic plastic micro-objectives. Appl. Opt. 49(23), 4379–84 (2010)PubMedCrossRef
162.
Zurück zum Zitat G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, Diffractive-refractive hybrid corrector for achroand apochromatic corrections of optical systems. Appl. Opt. 45(24), 6137 (2006) G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, Diffractive-refractive hybrid corrector for achroand apochromatic corrections of optical systems. Appl. Opt. 45(24), 6137 (2006)
163.
Zurück zum Zitat T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27(14), 2960–71 (1988)PubMedCrossRef T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27(14), 2960–71 (1988)PubMedCrossRef
164.
Zurück zum Zitat D.A. Buralli, G.M. Morris, Effects of diffraction efficiency on the modulation transfer function of diffractive lenses. Appl. Opt. 31(22), 4389–96 (1992)PubMedCrossRef D.A. Buralli, G.M. Morris, Effects of diffraction efficiency on the modulation transfer function of diffractive lenses. Appl. Opt. 31(22), 4389–96 (1992)PubMedCrossRef
165.
Zurück zum Zitat D. Faklis, G.M. Morris, Spectral properties of multiorder diffractive lenses. Appl. Opt. 34(14), 2462–2468 (1995)PubMedCrossRef D. Faklis, G.M. Morris, Spectral properties of multiorder diffractive lenses. Appl. Opt. 34(14), 2462–2468 (1995)PubMedCrossRef
166.
Zurück zum Zitat C. Londono, P.P. Clark, Modeling diffraction efficiency effects when designing hybrid diffractive lens systems. Appl. Opt. 31(13), 2248–52 (1992)PubMedCrossRef C. Londono, P.P. Clark, Modeling diffraction efficiency effects when designing hybrid diffractive lens systems. Appl. Opt. 31(13), 2248–52 (1992)PubMedCrossRef
167.
Zurück zum Zitat M.D. Missig, G.M. Morris, Diffractive optics applied to eyepiece design. Appl. Opt. 34(14), 2452–61 (1995)PubMedCrossRef M.D. Missig, G.M. Morris, Diffractive optics applied to eyepiece design. Appl. Opt. 34(14), 2452–61 (1995)PubMedCrossRef
168.
Zurück zum Zitat E. Noponen, J. Turunen, A. Vasara, Parametric optimization of multilevel diffractive optical elements by electromagnetic theory. Appl. Opt. 31(28), 5910–2 (1992)PubMedCrossRef E. Noponen, J. Turunen, A. Vasara, Parametric optimization of multilevel diffractive optical elements by electromagnetic theory. Appl. Opt. 31(28), 5910–2 (1992)PubMedCrossRef
169.
Zurück zum Zitat D.W. Sweeney, G.E. Sommargren, Harmonic diffractive lenses. Appl. Opt. 34(14), 2469–2475 (1995)PubMedCrossRef D.W. Sweeney, G.E. Sommargren, Harmonic diffractive lenses. Appl. Opt. 34(14), 2469–2475 (1995)PubMedCrossRef
170.
Zurück zum Zitat M. Meem, S. Banerji, C. Pies, T. Oberbiermann, A. Majumder, B. Sensale-Rodriguez, R. Menon, Large-area, high-numerical-aperture multi-level diffractive lens via inverse design. Optica 7(3), 252 (2020) M. Meem, S. Banerji, C. Pies, T. Oberbiermann, A. Majumder, B. Sensale-Rodriguez, R. Menon, Large-area, high-numerical-aperture multi-level diffractive lens via inverse design. Optica 7(3), 252 (2020)
171.
Zurück zum Zitat S. Schmidt, S. Thiele, A. Herkommer, A. Tunnermann, H. Gross, Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses. Opt. Lett. 42(8), 1612–1615 (2017)PubMedCrossRef S. Schmidt, S. Thiele, A. Herkommer, A. Tunnermann, H. Gross, Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses. Opt. Lett. 42(8), 1612–1615 (2017)PubMedCrossRef
172.
Zurück zum Zitat H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)CrossRef H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)CrossRef
Metadaten
Titel
Introduction
verfasst von
Daniel Werdehausen
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-75684-0_1

Neuer Inhalt