Skip to main content

2021 | OriginalPaper | Buchkapitel

2. Fundamentals of Effective Materials and Diffractive Optics

verfasst von : Daniel Werdehausen

Erschienen in: Nanocomposites as Next-Generation Optical Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, I introduce the fundamental concepts and relationships from the different fields, including electrodynamics, optical design, materials science, and diffractive optics, which are central to the following chapters. This chapter is not intended to replace a textbook but should rather serve as a reference, which provides the readers with the relevant basics of fields with which they are not familiar.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Russakoff, A derivation of the macroscopic Maxwell equations. Am. J. Phys. 38(10), 1188–1195 (1970)CrossRef G. Russakoff, A derivation of the macroscopic Maxwell equations. Am. J. Phys. 38(10), 1188–1195 (1970)CrossRef
2.
Zurück zum Zitat J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999) J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)
3.
Zurück zum Zitat D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Optica 6(8), 1031 (2019) D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Optica 6(8), 1031 (2019)
4.
Zurück zum Zitat J. Mistrik, S. Kasap, H. E. Ruda, C. Koughia, J. Singh, Optical properties of electronic materials: fundamentals and characterization, in Springer Handbook of Electronic and Photonic Materials, ed. by P. Kasap Safa Capper (Springer, Cham, 2017), p. 1 J. Mistrik, S. Kasap, H. E. Ruda, C. Koughia, J. Singh, Optical properties of electronic materials: fundamentals and characterization, in Springer Handbook of Electronic and Photonic Materials, ed. by P. Kasap Safa Capper (Springer, Cham, 2017), p. 1
5.
Zurück zum Zitat H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)CrossRef H. Gross, W. Singer, M. Totzeck, F. Blechinger, B. Achtner, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Berlin, 2005)CrossRef
6.
Zurück zum Zitat T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27(14), 2960–71 (1988)CrossRef T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27(14), 2960–71 (1988)CrossRef
7.
Zurück zum Zitat C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008) C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008)
8.
Zurück zum Zitat X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019) X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019)
9.
Zurück zum Zitat I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecular ensembles. Chem. Phys. Chem. 21, 878 (2020) I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecular ensembles. Chem. Phys. Chem. 21, 878 (2020)
10.
Zurück zum Zitat D. Theobald, A. Egel, G. Gomard, U. Lemmer. Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles. Phys. Rev. B 96(3), 033822 (2017) D. Theobald, A. Egel, G. Gomard, U. Lemmer. Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles. Phys. Rev. B 96(3), 033822 (2017)
11.
Zurück zum Zitat M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef
12.
Zurück zum Zitat M.I. Mishchenko, L.D. Travis, A. Macke, Scattering of light by polydisperse, randomly oriented, finite circular cylinders. Appl. Opt. 35(24), 4927–4940 (1996)CrossRef M.I. Mishchenko, L.D. Travis, A. Macke, Scattering of light by polydisperse, randomly oriented, finite circular cylinders. Appl. Opt. 35(24), 4927–4940 (1996)CrossRef
13.
Zurück zum Zitat G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 330(3), 377–445 (1908)CrossRef G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 330(3), 377–445 (1908)CrossRef
14.
Zurück zum Zitat V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)CrossRef V.A. Markel, Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)CrossRef
15.
Zurück zum Zitat P. Mallet, C.-A. Guérin, A. Sentenac. Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy. Phys. Rev. B 72(1), 014205 (2005) P. Mallet, C.-A. Guérin, A. Sentenac. Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy. Phys. Rev. B 72(1), 014205 (2005)
16.
Zurück zum Zitat W.T. Doyle, Optical properties of a suspension of metal spheres. Phys. Rev. B 39(14), 9852 (1989) W.T. Doyle, Optical properties of a suspension of metal spheres. Phys. Rev. B 39(14), 9852 (1989)
17.
Zurück zum Zitat R. Ruppin, Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182(4), 273–279 (2000)CrossRef R. Ruppin, Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182(4), 273–279 (2000)CrossRef
18.
Zurück zum Zitat J.M.G. Cowie, V. Arrighi, Polymers: Chemistry and Physics of Modern Materials (CRC Press, Boca Raton, 2007)CrossRef J.M.G. Cowie, V. Arrighi, Polymers: Chemistry and Physics of Modern Materials (CRC Press, Boca Raton, 2007)CrossRef
19.
Zurück zum Zitat S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214
20.
Zurück zum Zitat S.K. Kumar, R. Krishnamoorti, Nanocomposites: structure, phase behavior, and properties. Ann. Rev. Chem. Biomolecular Eng. 1(1), 37–58 (2010) S.K. Kumar, R. Krishnamoorti, Nanocomposites: structure, phase behavior, and properties. Ann. Rev. Chem. Biomolecular Eng. 1(1), 37–58 (2010)
21.
Zurück zum Zitat G. Kickelbick, The search of a homogeneously dispersed material-the art of handling the organic polymer/metal oxide interface. J. Sol-Gel Sci. Technol 46(3), 281–290 (2008)CrossRef G. Kickelbick, The search of a homogeneously dispersed material-the art of handling the organic polymer/metal oxide interface. J. Sol-Gel Sci. Technol 46(3), 281–290 (2008)CrossRef
22.
Zurück zum Zitat P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef
23.
Zurück zum Zitat P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12, 1–39 (2009)CrossRef P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12, 1–39 (2009)CrossRef
24.
Zurück zum Zitat S.G. Advani, K.-T. Hsaio, Manufacturing Techniques for Polymer Matrix Composites (Woodhead Publishing Limited, 2012) S.G. Advani, K.-T. Hsaio, Manufacturing Techniques for Polymer Matrix Composites (Woodhead Publishing Limited, 2012)
25.
Zurück zum Zitat Z. Chen, Pixelligent Zirconia Nano-Crystals for OLED applications, in White Paper (2014) Z. Chen, Pixelligent Zirconia Nano-Crystals for OLED applications, in White Paper (2014)
26.
Zurück zum Zitat D. Russel, A. Stabell. Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016) D. Russel, A. Stabell. Scaling-up pixelligent nanocrystal dispersions, in White Paper (2016)
27.
Zurück zum Zitat Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014) Z. Chen, J. Wang, Pixelligent internal light extraction layer for OLED lighting, in White Paper (2014)
28.
Zurück zum Zitat Z. Chen, S. Monickam, M. Weinstein, Low chromatic aberration nanocomposite, in White Paper (2015) Z. Chen, S. Monickam, M. Weinstein, Low chromatic aberration nanocomposite, in White Paper (2015)
29.
Zurück zum Zitat C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation New York, 2005) C.A. Palmer, E.G. Loewen, Diffraction Grating Handbook (Newport Corporation New York, 2005)
30.
Zurück zum Zitat T. Nakai, Diffractive Optical Element. Patent US6587272 (1999) T. Nakai, Diffractive Optical Element. Patent US6587272 (1999)
31.
Zurück zum Zitat H. Ukuda, Optical material, and, optical element, optical system and laminated diffractive optical element using it. Patent US20050110830 (2005) H. Ukuda, Optical material, and, optical element, optical system and laminated diffractive optical element using it. Patent US20050110830 (2005)
32.
Zurück zum Zitat S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses, in Opt. Exp. 27(24), 35621 (2019) S. Thiele, C. Pruss, A.M. Herkommer, H. Giessen, 3D printed stacked diffractive microlenses, in Opt. Exp. 27(24), 35621 (2019)
33.
Zurück zum Zitat M.T. Gale, Replication techniques for diffractive optical elements. Microelectron. Eng. 34(3–4), 321–339 (1997)CrossRef M.T. Gale, Replication techniques for diffractive optical elements. Microelectron. Eng. 34(3–4), 321–339 (1997)CrossRef
34.
Zurück zum Zitat T. Nakai, H. Ogawa, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and Micro-Optics. Optical Society of America, DMA2 (2002) T. Nakai, H. Ogawa, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and Micro-Optics. Optical Society of America, DMA2 (2002)
35.
Zurück zum Zitat B.H. Kleemann, M. Seesselberg, J. Ruoff, Design concepts for broadband high-efficiency DOEs. J. Eur. Opt. Soc. Rapid Pub. 3 (2008) B.H. Kleemann, M. Seesselberg, J. Ruoff, Design concepts for broadband high-efficiency DOEs. J. Eur. Opt. Soc. Rapid Pub. 3 (2008)
36.
Zurück zum Zitat M. Seesselberg, J. Ruoff, B.H. Kleemann, Diffractive optical element for colour sensor has multiple successive curvatures structure at right angles to extension direction. Patent DE102006007432 (2007) M. Seesselberg, J. Ruoff, B.H. Kleemann, Diffractive optical element for colour sensor has multiple successive curvatures structure at right angles to extension direction. Patent DE102006007432 (2007)
37.
Zurück zum Zitat J.M. Trapp, M. Decker, J. Petschulat, T. Pertsch, T.G. Jabbour, Design of a 2 diopter holographic progressive lens. Opt. Exp. 26(25), 32866–32877 (2018)CrossRef J.M. Trapp, M. Decker, J. Petschulat, T. Pertsch, T.G. Jabbour, Design of a 2 diopter holographic progressive lens. Opt. Exp. 26(25), 32866–32877 (2018)CrossRef
38.
Zurück zum Zitat W.C. Sweatt. Describing holographic optical elements as lenses. J. Opt. Soc. Am. 67(6), 803 (1977) W.C. Sweatt. Describing holographic optical elements as lenses. J. Opt. Soc. Am. 67(6), 803 (1977)
39.
Zurück zum Zitat J.M. Trapp, T.G. Jabbour, G. Kelch, T. Pertsch, M. Decker, Hybrid refractive holographic single vision spectacle lenses. J. Eur. Opt. Soc.-Rapid Pub. 15(1), 14 (2019) J.M. Trapp, T.G. Jabbour, G. Kelch, T. Pertsch, M. Decker, Hybrid refractive holographic single vision spectacle lenses. J. Eur. Opt. Soc.-Rapid Pub. 15(1), 14 (2019)
40.
Zurück zum Zitat G.J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements (Report, Lincoln Laboratory Massachusetts Institute of Technology, 1989) G.J. Swanson, Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements (Report, Lincoln Laboratory Massachusetts Institute of Technology, 1989)
41.
Zurück zum Zitat S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon. Imaging with flat optics: metalenses or diffractive lenses? Opt. 6(6), 805 (2019) S. Banerji, M. Meem, A. Majumder, F.G. Vasquez, B. Sensale-Rodriguez, R. Menon. Imaging with flat optics: metalenses or diffractive lenses? Opt. 6(6), 805 (2019)
42.
Zurück zum Zitat G. Kim, J.A. Dominguez-Caballero, R. Menon, Design and analysis of multi-wavelength diffractive optics. Opt. Exp. 20(3), 2814–23 (2012)CrossRef G. Kim, J.A. Dominguez-Caballero, R. Menon, Design and analysis of multi-wavelength diffractive optics. Opt. Exp. 20(3), 2814–23 (2012)CrossRef
43.
Zurück zum Zitat N. Mohammad, M. Meem, X. Wan, R. Menon, Full-color, large area, transmissive holograms enabled by multi-level diffractive optics, Sci. Rep. 7(1), 5789 (2017) N. Mohammad, M. Meem, X. Wan, R. Menon, Full-color, large area, transmissive holograms enabled by multi-level diffractive optics, Sci. Rep. 7(1), 5789 (2017)
44.
Zurück zum Zitat P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016) P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016)
45.
Zurück zum Zitat P. Lalanne, Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16(10), 2517 (1999) P. Lalanne, Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16(10), 2517 (1999)
46.
Zurück zum Zitat P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings, Opt. Lett. 23(14), 1081 (1998) P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings, Opt. Lett. 23(14), 1081 (1998)
47.
Zurück zum Zitat P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999)CrossRef P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16(5), 1143–1156 (1999)CrossRef
48.
Zurück zum Zitat P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11(3), 1600295 (2017) P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11(3), 1600295 (2017)
49.
Zurück zum Zitat P. Lalanne, J.P. Hugonin, P. Chavel, Optical properties of deep lamellar Gratings: a coupled Bloch-mode insight. J. Lightwave Technol. 24(6), 2442–2449 (2006)CrossRef P. Lalanne, J.P. Hugonin, P. Chavel, Optical properties of deep lamellar Gratings: a coupled Bloch-mode insight. J. Lightwave Technol. 24(6), 2442–2449 (2006)CrossRef
50.
Zurück zum Zitat M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, Wide-field-angle behavior of blazed-binary gratings in the resonance domain. Opt. Lett. 25(23), 1690 (2000) M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, Wide-field-angle behavior of blazed-binary gratings in the resonance domain. Opt. Lett. 25(23), 1690 (2000)
51.
Zurück zum Zitat C. Ribot, M.-S.L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, Broadband and efficient diffraction. Adv. Opt. Mater. 1(7), 489–493 (2013)CrossRef C. Ribot, M.-S.L. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, P. Lalanne, Broadband and efficient diffraction. Adv. Opt. Mater. 1(7), 489–493 (2013)CrossRef
52.
Zurück zum Zitat C. Sauvan, P. Lalanne, M.-S. L. Lee. Broadband blazing with artificial dielectrics. Opt. Lett. 29(14), 1593 (2004) C. Sauvan, P. Lalanne, M.-S. L. Lee. Broadband blazing with artificial dielectrics. Opt. Lett. 29(14), 1593 (2004)
53.
Zurück zum Zitat Y. Arieli, S. Noach, S. Ozeri, N. Eisenberg, Design of diffractive optical elements for multiple wavelengths. Appl. Opt. 37(26), 6174 (1998) Y. Arieli, S. Noach, S. Ozeri, N. Eisenberg, Design of diffractive optical elements for multiple wavelengths. Appl. Opt. 37(26), 6174 (1998)
54.
Zurück zum Zitat Y. Arieli, S. Ozeri, N. Eisenberg, S. Noach, Design of a diffractive optical element for wide spectral bandwidth. Opt. Lett. 23(11), 823 (1998) Y. Arieli, S. Ozeri, N. Eisenberg, S. Noach, Design of a diffractive optical element for wide spectral bandwidth. Opt. Lett. 23(11), 823 (1998)
55.
Zurück zum Zitat D.A. Buralli, G.M. Morris, Effects of diffraction efficiency on the modulation transfer function of diffractive lenses. Appl. Opt. 31(22), 4389–96 (1992)CrossRef D.A. Buralli, G.M. Morris, Effects of diffraction efficiency on the modulation transfer function of diffractive lenses. Appl. Opt. 31(22), 4389–96 (1992)CrossRef
56.
Zurück zum Zitat J.A. Davison, M.J. Simpson, History and development of the apodized diffractive intraocular lens. J. Cataract Refractive Surgery 32(5), 849–58 (2006)CrossRef J.A. Davison, M.J. Simpson, History and development of the apodized diffractive intraocular lens. J. Cataract Refractive Surgery 32(5), 849–58 (2006)CrossRef
57.
Zurück zum Zitat D. Faklis, G.M. Morris, Spectral properties of multiorder diffractive lenses. Appl. Opt. 34(14), 2462–2468 (1995)CrossRef D. Faklis, G.M. Morris, Spectral properties of multiorder diffractive lenses. Appl. Opt. 34(14), 2462–2468 (1995)CrossRef
58.
Zurück zum Zitat A.J. Glass, K.J. Weible, A. Schilling, H.P. Herzig, D.R. Lobb, J.W. Goodman, M. Chang, A.H. Guenther, T. Asakura, Achromatization of the diffraction efficiency of diffractive optical elements, in Proceedings SPIE 3749, 18th Congress of the International Commission for Optics, vol. 3749 (1999), pp. 378–379 A.J. Glass, K.J. Weible, A. Schilling, H.P. Herzig, D.R. Lobb, J.W. Goodman, M. Chang, A.H. Guenther, T. Asakura, Achromatization of the diffraction efficiency of diffractive optical elements, in Proceedings SPIE 3749, 18th Congress of the International Commission for Optics, vol. 3749 (1999), pp. 378–379
59.
Zurück zum Zitat G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov, S.A. Stepanov, Diffractive-refractive correction units for plastic compact zoom lenses. Appl. Opt. 51(20), 4597–604 (2012)CrossRef G.I. Greisukh, E.G. Ezhov, A.V. Kalashnikov, S.A. Stepanov, Diffractive-refractive correction units for plastic compact zoom lenses. Appl. Opt. 51(20), 4597–604 (2012)CrossRef
60.
Zurück zum Zitat G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, Diffractive-refractive hybrid corrector for achroand apochromatic corrections of optical systems. Appl. Opt. 45(24), 6137 (2006) G.I. Greisukh, E.G. Ezhov, S.A. Stepanov, Diffractive-refractive hybrid corrector for achroand apochromatic corrections of optical systems. Appl. Opt. 45(24), 6137 (2006)
61.
Zurück zum Zitat C. Londono, P.P. Clark, Modeling diffraction efficiency effects when designing hybrid diffractive lens systems. Appl. Opt. 31(13), 2248–52 (1992)CrossRef C. Londono, P.P. Clark, Modeling diffraction efficiency effects when designing hybrid diffractive lens systems. Appl. Opt. 31(13), 2248–52 (1992)CrossRef
62.
Zurück zum Zitat M.D. Missig, G.M. Morris, Diffractive optics applied to eyepiece design. Appl. Opt. 34(14), 2452–61 (1995)CrossRef M.D. Missig, G.M. Morris, Diffractive optics applied to eyepiece design. Appl. Opt. 34(14), 2452–61 (1995)CrossRef
63.
Zurück zum Zitat E. Noponen, J. Turunen, A. Vasara, Parametric optimization of multilevel diffractive optical elements by electromagnetic theory. Appl. Opt. 31(28), 5910–2 (1992)CrossRef E. Noponen, J. Turunen, A. Vasara, Parametric optimization of multilevel diffractive optical elements by electromagnetic theory. Appl. Opt. 31(28), 5910–2 (1992)CrossRef
64.
Zurück zum Zitat D.W. Sweeney, G.E. Sommargren, Harmonic diffractive lenses. Appl. Opt. 34(14), 2469–2475 (1995)CrossRef D.W. Sweeney, G.E. Sommargren, Harmonic diffractive lenses. Appl. Opt. 34(14), 2469–2475 (1995)CrossRef
65.
Zurück zum Zitat T.K. Gaylord, M.G. Moharam, Analysis and applications of optical diffraction by gratings. Proc. IEEE 73(5), 894–937 (1985)CrossRef T.K. Gaylord, M.G. Moharam, Analysis and applications of optical diffraction by gratings. Proc. IEEE 73(5), 894–937 (1985)CrossRef
66.
Zurück zum Zitat O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, J. Ruoff, Rigorous analysis of shadowing effects in blazed transmission gratings. Opt. Lett. 31(24), 3638 (2006) O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, J. Ruoff, Rigorous analysis of shadowing effects in blazed transmission gratings. Opt. Lett. 31(24), 3638 (2006)
67.
Zurück zum Zitat S. Schmidt, S. Thiele, A. Herkommer, A. Tunnermann, H. Gross, Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses. Opt. Lett. 42(8), 1612–1615 (2017)CrossRef S. Schmidt, S. Thiele, A. Herkommer, A. Tunnermann, H. Gross, Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses. Opt. Lett. 42(8), 1612–1615 (2017)CrossRef
68.
Zurück zum Zitat D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Flat optics in high numerical aperture broadband imaging systems. J. Opt. 22(6), 065607 (2020) D. Werdehausen, S. Burger, I. Staude, T. Pertsch, M. Decker, Flat optics in high numerical aperture broadband imaging systems. J. Opt. 22(6), 065607 (2020)
69.
Zurück zum Zitat Schott, Optical Glass 2020. Tech. rep. Schott AG (2020) Schott, Optical Glass 2020. Tech. rep. Schott AG (2020)
70.
Zurück zum Zitat N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Phys. Polonica-Series A General Phys. 116(4), 585 (2009) N. Sultanova, S. Kasarova, I. Nikolov, Dispersion properties of optical polymers. Acta Phys. Polonica-Series A General Phys. 116(4), 585 (2009)
Metadaten
Titel
Fundamentals of Effective Materials and Diffractive Optics
verfasst von
Daniel Werdehausen
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-75684-0_2

Neuer Inhalt