Skip to main content
Top
Published in: Wireless Personal Communications 4/2021

30-01-2021

Investigation of Ionospheric Electron Density Change During Two Partial Solar Eclipses and Its Comparison with Predictions of NeQuick 2 and IRI-2016 Models

Authors: Ramazan Atıcı, Selçuk Sağır, Leonid Ya Emelyanov, Mykhaylo Lyashenko

Published in: Wireless Personal Communications | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, the results obtained by incoherent scatter radar (ISR) and empirical models (NeQuick2 and IRI-2016) of the variations in mid-latitude ionospheric electron density during partial solar eclipses on March 29, 2006 and March 20, 2015 over Kharkiv (49.60° N, 36.30° E, Ukraine) are presented and the prediction performances of the models during these partial solar eclipses are compared. The electron density (Ne) values are obtained for seven (190, 210, 240, 290, 340, 410, and 490 km) different altitudes. The percent deviation of Ne values, statistical correlation coefficient and root mean square error (RMSE) during solar eclipses are applied to make this investigation. According to the percent deviation of Ne values measured by ISR, a decrease in electron density was observed at all heights during the eclipse of March 29, 2006, whereas there was a decrease in Ne values at only 190, 210, and 240 km altitudes during the eclipse of March 20, 2015. However, at other altitudes (290, 340, 410, and 490 km), the increase has occurred in the electron density during the eclipse on March 20, 2015. The IRI-2016 model predicted that Ne values increase at all altitudes in the solar eclipse on March 20, 2015, and a decrease in Ne at all altitudes occurs on March 29, 2006. It can be said that the NeQuick 2 model predicts a decrease in the first three heights and an increase in other heights. When the predictions of the empirical models were compared, according to the root mean square error (RMSE) calculations, the predictions of the IRI-2016 model can be said to be better than that of NeQuick 2 at all heights during eclipse of March 29, 2006. Besides, the IRI-2016 model's prediction can be stated to be better than NeQuick 2 model at the first three altitudes (190, 210 and 240 km), while the NeQuick 2 model's prediction can be said to be better than the IRI-2016 model at the last four (290, 340, 410, and 490 km) altitudes during March 20, 2015 eclipse. It can be stated that ionospheric models do not accurately reflect the ionospheric response to partial solar eclipses. The inclusion of ISR data in empirical models will help models accurately predict the ionospheric response under all conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adekoya, B., & Chukwuma, V. (2016). Ionospheric F2 layer responses to total solar eclipses at low and mid-latitude. Journal of Atmospheric and Solar-Terrestrial Physics, 138, 136–160.CrossRef Adekoya, B., & Chukwuma, V. (2016). Ionospheric F2 layer responses to total solar eclipses at low and mid-latitude. Journal of Atmospheric and Solar-Terrestrial Physics, 138, 136–160.CrossRef
2.
go back to reference Chukwuma, V., & Adekoya, B. (2016). The effects of March 20 2015 solar eclipse on the F2 layer in the mid-latitude. Advances in Space Research, 58(9), 1720–1731.CrossRef Chukwuma, V., & Adekoya, B. (2016). The effects of March 20 2015 solar eclipse on the F2 layer in the mid-latitude. Advances in Space Research, 58(9), 1720–1731.CrossRef
3.
go back to reference Pietrella, M., Pezzopane, M., & Settimi, A. (2016). Ionospheric response under the influence of the solar eclipse occurred on 20 March 2015: Importance of autoscaled data and their assimilation for obtaining a reliable modeling of the ionosphere. Journal of Atmospheric Solar-Terrestrial Physics, 146, 49–57.CrossRef Pietrella, M., Pezzopane, M., & Settimi, A. (2016). Ionospheric response under the influence of the solar eclipse occurred on 20 March 2015: Importance of autoscaled data and their assimilation for obtaining a reliable modeling of the ionosphere. Journal of Atmospheric Solar-Terrestrial Physics, 146, 49–57.CrossRef
4.
go back to reference Rawer, K., Bilitza, D., & Ramakrishnan, S. (1978). Goals and status of the international reference ionosphere. Reviews of Geophysics, 16(2), 177–181.CrossRef Rawer, K., Bilitza, D., & Ramakrishnan, S. (1978). Goals and status of the international reference ionosphere. Reviews of Geophysics, 16(2), 177–181.CrossRef
5.
go back to reference Bilitza, D. (2001). International reference ionosphere 2000. Radio Science, 36(2), 261–275.CrossRef Bilitza, D. (2001). International reference ionosphere 2000. Radio Science, 36(2), 261–275.CrossRef
6.
go back to reference Bilitza, D., & Reinisch, B. W. (2008). International reference ionosphere 2007: Improvements and new parameters. Advances in Space Research, 42(4), 599–609.CrossRef Bilitza, D., & Reinisch, B. W. (2008). International reference ionosphere 2007: Improvements and new parameters. Advances in Space Research, 42(4), 599–609.CrossRef
7.
go back to reference Bilitza, D. (2015). The international reference ionosphere: Status 2013. Advances in Space Research, 55(8), 1914–1927.CrossRef Bilitza, D. (2015). The international reference ionosphere: Status 2013. Advances in Space Research, 55(8), 1914–1927.CrossRef
8.
go back to reference Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., et al. (2014). The International reference ionosphere 2012: a model of international collaboration. Journal of Space Weather Space Climate, 4, A07.CrossRef Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., et al. (2014). The International reference ionosphere 2012: a model of international collaboration. Journal of Space Weather Space Climate, 4, A07.CrossRef
9.
go back to reference Ezquer, R., de Adler, N. O., Radicella, S., de Gonzalez, M. M., & Manzano, J. (1995). IRI and BPM total electron content predictions for Tucuman. Advances in Space Research, 15(2), 121–124.CrossRef Ezquer, R., de Adler, N. O., Radicella, S., de Gonzalez, M. M., & Manzano, J. (1995). IRI and BPM total electron content predictions for Tucuman. Advances in Space Research, 15(2), 121–124.CrossRef
10.
go back to reference Mosert, M., Gende, M., Brunini, C., Ezquer, R., & Altadill, D. (2007). Comparisons of IRI TEC predictions with GPS and digisonde measurements at Ebro. Advances in Space Research, 39(5), 841–847.CrossRef Mosert, M., Gende, M., Brunini, C., Ezquer, R., & Altadill, D. (2007). Comparisons of IRI TEC predictions with GPS and digisonde measurements at Ebro. Advances in Space Research, 39(5), 841–847.CrossRef
11.
go back to reference Arikan, F., Shukurov, S., Tuna, H., Arikan, O., & Gulyaeva, T. (2016). Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance. Geodesy and Geodynamics, 7(1), 1–10.CrossRef Arikan, F., Shukurov, S., Tuna, H., Arikan, O., & Gulyaeva, T. (2016). Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance. Geodesy and Geodynamics, 7(1), 1–10.CrossRef
12.
go back to reference Leong, S., Musa, T., Omar, K., Subari, M., Pathy, N., & Asillam, M. (2015). Assessment of ionosphere models at Banting: Performance of IRI-2007, IRI-2012 and NeQuick 2 models during the ascending phase of solar cycle 24. Advances in Space Research, 55(8), 1928–1940.CrossRef Leong, S., Musa, T., Omar, K., Subari, M., Pathy, N., & Asillam, M. (2015). Assessment of ionosphere models at Banting: Performance of IRI-2007, IRI-2012 and NeQuick 2 models during the ascending phase of solar cycle 24. Advances in Space Research, 55(8), 1928–1940.CrossRef
13.
go back to reference Orús, R., Hernández-Pajares, M., Juan, J., Sanz, J., & Garcıa-Fernández, M. (2002). Performance of different TEC models to provide GPS ionospheric corrections. Journal of Atmospheric and Solar-Terrestrial Physics, 64(18), 2055–2062.CrossRef Orús, R., Hernández-Pajares, M., Juan, J., Sanz, J., & Garcıa-Fernández, M. (2002). Performance of different TEC models to provide GPS ionospheric corrections. Journal of Atmospheric and Solar-Terrestrial Physics, 64(18), 2055–2062.CrossRef
14.
go back to reference Bilitza, D., & Reinisch, B. (2019). Preface: Evaluation IRI performance. Advances in Space Research, 63, 1837–1837.CrossRef Bilitza, D., & Reinisch, B. (2019). Preface: Evaluation IRI performance. Advances in Space Research, 63, 1837–1837.CrossRef
15.
go back to reference Tariku, Y. A. (2019). Mid latitude ionospheric TEC modeling and the IRI model validation during the recent high solar activity (2013–2015). Advances in Space Research, 63(12), 4025–4038.CrossRef Tariku, Y. A. (2019). Mid latitude ionospheric TEC modeling and the IRI model validation during the recent high solar activity (2013–2015). Advances in Space Research, 63(12), 4025–4038.CrossRef
16.
go back to reference Atıcı, R. (2018). Comparison of GPS TEC with modelled values from IRI 2016 and IRI-PLAS over Istanbul Turkey. Astrophysics and Space Science, 363(11), 231.CrossRef Atıcı, R. (2018). Comparison of GPS TEC with modelled values from IRI 2016 and IRI-PLAS over Istanbul Turkey. Astrophysics and Space Science, 363(11), 231.CrossRef
17.
go back to reference Lin, C.-Y., Liu, J.-Y., Lin, C.-H., Sun, Y.-Y., Araujo-Pradere, E. A., & Kakinami, Y. J. E. (2012). Using the IRI, the MAGIC model, and the co-located ground-based GPS receivers to study ionospheric solar eclipse and storm signatures on July 22, 2009. Earth, Planets and Space, 64(6), 513–520.CrossRef Lin, C.-Y., Liu, J.-Y., Lin, C.-H., Sun, Y.-Y., Araujo-Pradere, E. A., & Kakinami, Y. J. E. (2012). Using the IRI, the MAGIC model, and the co-located ground-based GPS receivers to study ionospheric solar eclipse and storm signatures on July 22, 2009. Earth, Planets and Space, 64(6), 513–520.CrossRef
18.
go back to reference Gioia, C., Aragon-Angel, A., & Fortuny, J. (2015). GNSS ionospheric model performance under non-nominal conditions: CMEs and solar eclipse. In 2015 international association of institutes of navigation world congress (IAIN), (pp. 1–7). IEEE. Gioia, C., Aragon-Angel, A., & Fortuny, J. (2015). GNSS ionospheric model performance under non-nominal conditions: CMEs and solar eclipse. In 2015 international association of institutes of navigation world congress (IAIN), (pp. 1–7). IEEE.
20.
go back to reference Radicella, S., & Leitinger, R. (2001). The evolution of the DGR approach to model electron density profiles. Advances in Space Research, 27(1), 35–40.CrossRef Radicella, S., & Leitinger, R. (2001). The evolution of the DGR approach to model electron density profiles. Advances in Space Research, 27(1), 35–40.CrossRef
21.
go back to reference Nava, B., Coisson, P., & Radicella, S. (2008). A new version of the NeQuick ionosphere electron density model. Journal of Atmospheric and Solar-Terrestrial Physics, 70(15), 1856–1862.CrossRef Nava, B., Coisson, P., & Radicella, S. (2008). A new version of the NeQuick ionosphere electron density model. Journal of Atmospheric and Solar-Terrestrial Physics, 70(15), 1856–1862.CrossRef
22.
go back to reference Radicella, S. M. (2009). The NeQuick model genesis, uses and evolution. Annals of Geophysics, 52(3–4), 417–422. Radicella, S. M. (2009). The NeQuick model genesis, uses and evolution. Annals of Geophysics, 52(3–4), 417–422.
23.
go back to reference Leitinger, R., Zhang, M.-L., & Radicella, S. M. (2005). An improved bottomside for the ionospheric electron density model NeQuick. Annals of Geophysics, 48(3), 525–534. Leitinger, R., Zhang, M.-L., & Radicella, S. M. (2005). An improved bottomside for the ionospheric electron density model NeQuick. Annals of Geophysics, 48(3), 525–534.
24.
go back to reference Chernogor, L., Grigorenko, Y. I., & Lyashenko, M. (2011). Effects in geospace during partial solar eclipses over Kharkiv. International Journal of Remote Sensing, 32(11), 3219–3229.CrossRef Chernogor, L., Grigorenko, Y. I., & Lyashenko, M. (2011). Effects in geospace during partial solar eclipses over Kharkiv. International Journal of Remote Sensing, 32(11), 3219–3229.CrossRef
Metadata
Title
Investigation of Ionospheric Electron Density Change During Two Partial Solar Eclipses and Its Comparison with Predictions of NeQuick 2 and IRI-2016 Models
Authors
Ramazan Atıcı
Selçuk Sağır
Leonid Ya Emelyanov
Mykhaylo Lyashenko
Publication date
30-01-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08122-x

Other articles of this Issue 4/2021

Wireless Personal Communications 4/2021 Go to the issue