Skip to main content
Top
Published in: Journal of Polymer Research 6/2020

01-06-2020 | ORIGINAL PAPER

Investigation of long-term ageing effect on the thermal properties of chicken feather fibre/poly(lactic acid) biocomposites

Authors: Tarkan Akderya, Uğur Özmen, Buket Okutan Baba

Published in: Journal of Polymer Research | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the effects of long-term natural atmospheric ageing on the thermal properties of chicken feather fibre reinforced poly(lactic acid) biocomposite materials having chicken feather fibre mass content of 2, 5, and 10% were investigated. Chicken feather fibres, which are bio-based reinforcement material, and poly(lactic acid), which is bio-based matrix material, are compounded with a twin-screw extruder and injection-moulded; hence, the biocomposite material is produced. The effect of long-term natural atmospheric ageing on the thermal stability, crystallization, and melting behaviour of the biocomposite materials were analysed by thermogravimetric, derivative thermogravimetry, differential thermal, and differential scanning calorimetry analyses. In addition, the fracture surface of the samples was examined in depth by scanning electron microscopy analysis. The experimental results show that the long-term natural ageing process decreases the thermal stability values of the biocomposite materials and increases the glass transition temperatures and degree of crystallinities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Thomas S, Kuruvilla J, Malhotra SK et al (2012) Polymer composites. Wiley-VCH Thomas S, Kuruvilla J, Malhotra SK et al (2012) Polymer composites. Wiley-VCH
6.
go back to reference Vroman I, Tighzert L (2009) Biodegradable polymers. Materials (Basel) 2:307–344CrossRef Vroman I, Tighzert L (2009) Biodegradable polymers. Materials (Basel) 2:307–344CrossRef
7.
go back to reference Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12:242–247CrossRef Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12:242–247CrossRef
8.
go back to reference Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265CrossRef Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265CrossRef
9.
go back to reference Murthy N, Wilson S, Sy JC (2012) Biodegradation of polymers. In: polymer science: a comprehensive reference, 10 volume set. Elsevier, pp 547–560 Murthy N, Wilson S, Sy JC (2012) Biodegradation of polymers. In: polymer science: a comprehensive reference, 10 volume set. Elsevier, pp 547–560
10.
go back to reference Yin GZ, Yang XM (2020) Biodegradable polymers: a cure for the planet, but a long way to go. J Polym Res 27 Yin GZ, Yang XM (2020) Biodegradable polymers: a cure for the planet, but a long way to go. J Polym Res 27
11.
go back to reference Papageorgiou GZ (2018) Thinking green: sustainable polymers from renewable resources. Polymers (Basel) 10 Papageorgiou GZ (2018) Thinking green: sustainable polymers from renewable resources. Polymers (Basel) 10
14.
go back to reference Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC Press Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC Press
15.
go back to reference Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos Part A Appl Sci Manuf 56:280–289CrossRef Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos Part A Appl Sci Manuf 56:280–289CrossRef
16.
go back to reference Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540:354–362CrossRef Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540:354–362CrossRef
17.
go back to reference Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRef Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRef
20.
go back to reference Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482CrossRef Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482CrossRef
21.
go back to reference Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902CrossRef Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902CrossRef
23.
go back to reference S SK, Hiremath SS (2019) Natural Fiber reinforced composites in the context of biodegradability: a review. In: Reference Module in Materials Science and Materials Engineering. Elsevier S SK, Hiremath SS (2019) Natural Fiber reinforced composites in the context of biodegradability: a review. In: Reference Module in Materials Science and Materials Engineering. Elsevier
24.
go back to reference Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000-2010. Prog Polym Sci 37:1552–1596CrossRef Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000-2010. Prog Polym Sci 37:1552–1596CrossRef
32.
go back to reference Dauda BMD, Kolawole EG (2003) Processibility of Nigerian kapok fibre. Indian J Fibre Text Res 28:147–149 Dauda BMD, Kolawole EG (2003) Processibility of Nigerian kapok fibre. Indian J Fibre Text Res 28:147–149
40.
go back to reference Li Y, Shen YO (2014) The use of sisal and henequen fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials. Elsevier Inc., In, pp 165–210 Li Y, Shen YO (2014) The use of sisal and henequen fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials. Elsevier Inc., In, pp 165–210
47.
go back to reference Hidalgo-Cordero JF, García-Navarro J (2018) Totora (Schoenoplectus californicus (C.a. Mey.) Soják) and its potential as a construction material. Ind. Crops Prod 112:467–480CrossRef Hidalgo-Cordero JF, García-Navarro J (2018) Totora (Schoenoplectus californicus (C.a. Mey.) Soják) and its potential as a construction material. Ind. Crops Prod 112:467–480CrossRef
48.
go back to reference Bard D, Yarwood J, Tylee B (1997) Asbestos fibre identification by Raman microspectroscopy. J Raman Spectrosc 28:803–809. 10.1002/(SICI)1097-4555(199710)28:10<803::AID-JRS151>3.0.CO;2-7 Bard D, Yarwood J, Tylee B (1997) Asbestos fibre identification by Raman microspectroscopy. J Raman Spectrosc 28:803–809. 10.1002/(SICI)1097-4555(199710)28:10<803::AID-JRS151>3.0.CO;2-7
53.
go back to reference Bolormaa B, Drean JY, Enkhtuya D (2007) A study of the diameter distribution and tensile property of horse tail hair. J Nat Fibers 4:1–11CrossRef Bolormaa B, Drean JY, Enkhtuya D (2007) A study of the diameter distribution and tensile property of horse tail hair. J Nat Fibers 4:1–11CrossRef
55.
go back to reference Dunmade I (2013) Mechanical properties of renewable materials : a study on alpaca fibre. Int J Enginnering Sci Invent 2:56–62 Dunmade I (2013) Mechanical properties of renewable materials : a study on alpaca fibre. Int J Enginnering Sci Invent 2:56–62
58.
go back to reference Srivatsav V, Ravishankar C, Ramakarishna M et al (2018) Mechanical and thermal properties of chicken feather reinforced epoxy composite. AIP Conference Proceedings. American Institute of Physics Inc., InCrossRef Srivatsav V, Ravishankar C, Ramakarishna M et al (2018) Mechanical and thermal properties of chicken feather reinforced epoxy composite. AIP Conference Proceedings. American Institute of Physics Inc., InCrossRef
60.
go back to reference Bessa J, Souza J, Lopes JB et al (2017) Characterization of thermal and acoustic insulation of chicken feather reinforced composites. Procedia Engineering. Elsevier Ltd, In, pp 472–479 Bessa J, Souza J, Lopes JB et al (2017) Characterization of thermal and acoustic insulation of chicken feather reinforced composites. Procedia Engineering. Elsevier Ltd, In, pp 472–479
65.
go back to reference Techawinyutham L, Siengchin S, Dangtungee R, Parameswaranpillai J (2019) Influence of accelerated weathering on the thermo-mechanical, antibacterial, and rheological properties of polylactic acid incorporated with porous silica-containing varying amount of capsicum oleoresin. Compos part B Eng 175. https://doi.org/10.1016/j.compositesb.2019.107108 Techawinyutham L, Siengchin S, Dangtungee R, Parameswaranpillai J (2019) Influence of accelerated weathering on the thermo-mechanical, antibacterial, and rheological properties of polylactic acid incorporated with porous silica-containing varying amount of capsicum oleoresin. Compos part B Eng 175. https://​doi.​org/​10.​1016/​j.​compositesb.​2019.​107108
73.
go back to reference Araújo MC, Martins JP, Mirkhalaf SM et al (2014) Predicting the mechanical behavior of amorphous polymeric materials under strain through multi-scale simulation. Applied Surface Science. Elsevier B.V, In, pp 37–46 Araújo MC, Martins JP, Mirkhalaf SM et al (2014) Predicting the mechanical behavior of amorphous polymeric materials under strain through multi-scale simulation. Applied Surface Science. Elsevier B.V, In, pp 37–46
91.
go back to reference Auras R, Lim LT, Selke SEM, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. John Wiley and Sons Auras R, Lim LT, Selke SEM, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. John Wiley and Sons
92.
go back to reference Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251CrossRef Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251CrossRef
97.
go back to reference Askadskii A, Popova M, Matseevich T, Afanasyev E (2014) The influence of the degree of crystallinity on the elasticity modulus of polymers. Advanced Materials Research, In, pp 640–643 Askadskii A, Popova M, Matseevich T, Afanasyev E (2014) The influence of the degree of crystallinity on the elasticity modulus of polymers. Advanced Materials Research, In, pp 640–643
98.
go back to reference Gofman IV, Yudin VE, Orell O, Vuorinen J, Grigoriev AY, Svetlichnyi VM (2013) Influence of the degree of crystallinity on the mechanical and tribological properties of high-performance thermoplastics over a wide range of temperatures: from room temperature up to 250°C. J Macromol Sci Part B Phys 52:1848–1860. https://doi.org/10.1080/00222348.2013.808932 CrossRef Gofman IV, Yudin VE, Orell O, Vuorinen J, Grigoriev AY, Svetlichnyi VM (2013) Influence of the degree of crystallinity on the mechanical and tribological properties of high-performance thermoplastics over a wide range of temperatures: from room temperature up to 250°C. J Macromol Sci Part B Phys 52:1848–1860. https://​doi.​org/​10.​1080/​00222348.​2013.​808932 CrossRef
104.
go back to reference J. Shesan O, C. Stephen A, G. Chioma A, et al (2019) Fiber-Matrix Relationship for Composites Preparation. In: Composites from Renewable and Sustainable Materials [Working Title]. IntechOpen J. Shesan O, C. Stephen A, G. Chioma A, et al (2019) Fiber-Matrix Relationship for Composites Preparation. In: Composites from Renewable and Sustainable Materials [Working Title]. IntechOpen
Metadata
Title
Investigation of long-term ageing effect on the thermal properties of chicken feather fibre/poly(lactic acid) biocomposites
Authors
Tarkan Akderya
Uğur Özmen
Buket Okutan Baba
Publication date
01-06-2020
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 6/2020
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-020-02132-2

Other articles of this Issue 6/2020

Journal of Polymer Research 6/2020 Go to the issue

Premium Partners