Skip to main content
Top
Published in: Acta Mechanica 9/2021

22-06-2021 | Original Paper

Investigation of SH wave propagation in piezoelectric plates

Authors: Mouldi Zagrouba, Mohamed Shili Bouhdima

Published in: Acta Mechanica | Issue 9/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the propagation of transversally horizontal waves (SH) propagating in a piezoelectric plate is investigated. The dispersion curve is obtained numerically in the frequency domain by employing the power series technique (PST). In order to verify the sensitivity of the SH wave characteristics to different piezoelectric plate properties, the effect of each plate property is studied separately. Through different plates, the influence of each plate property on dispersion and SH wave structure is discussed. The electrically open and shorted conditions are considered. The study is focused on the first three SH modes. It is shown that the plate properties can be classified into two categories. Further, there is compensation between their effects on the phase velocity, electromechanical coupling coefficient, and SH wave structure. These results can be useful for the designs of acoustic wave devices.
Literature
1.
go back to reference Chimenti, D.E.: Guided waves in plates and their use in materials characterization. Appl. Mec. Rev. 50, 247–284 (1997)CrossRef Chimenti, D.E.: Guided waves in plates and their use in materials characterization. Appl. Mec. Rev. 50, 247–284 (1997)CrossRef
2.
3.
go back to reference Bleustein, J.L.: Some simple modes of wave propagation in an infinite piezoelectric plates. J. Acoust. Soc. Am. 45, 614–620 (1969)CrossRef Bleustein, J.L.: Some simple modes of wave propagation in an infinite piezoelectric plates. J. Acoust. Soc. Am. 45, 614–620 (1969)CrossRef
4.
go back to reference Chen, S., Tang, T., Wang, Z.: Shear-horizontal acoustic wave propagation in piezoelectric bounded plates with metal gratings. J. Acoust. Soc. Am. 117, 3609–3615 (2005)CrossRef Chen, S., Tang, T., Wang, Z.: Shear-horizontal acoustic wave propagation in piezoelectric bounded plates with metal gratings. J. Acoust. Soc. Am. 117, 3609–3615 (2005)CrossRef
5.
go back to reference Zaitsevy, B.D., Joshiy, S.G., Kuznetsovaz, I.E.: Investigation of quasi-shear-horizontal acoustic waves in thin plates of lithium niobate. Smart Mater. Struct. 6, 739–744 (1997)CrossRef Zaitsevy, B.D., Joshiy, S.G., Kuznetsovaz, I.E.: Investigation of quasi-shear-horizontal acoustic waves in thin plates of lithium niobate. Smart Mater. Struct. 6, 739–744 (1997)CrossRef
6.
go back to reference Niemczyk, T.M., Martin, S.J., Frye, G.C., Ricco, A.J.: Acoustoelectric interaction of plate modes with solutions. J. Appl. Phys. 64, 5002–5008 (1988)CrossRef Niemczyk, T.M., Martin, S.J., Frye, G.C., Ricco, A.J.: Acoustoelectric interaction of plate modes with solutions. J. Appl. Phys. 64, 5002–5008 (1988)CrossRef
7.
go back to reference Martin, S.J., Ricco, A.J., Niemczyk, T.M., Frye, G.C.: Characterization of SH acoustic plate mode liquid sensors. Sensors Actuators. 20, 253–268 (1989)CrossRef Martin, S.J., Ricco, A.J., Niemczyk, T.M., Frye, G.C.: Characterization of SH acoustic plate mode liquid sensors. Sensors Actuators. 20, 253–268 (1989)CrossRef
8.
go back to reference Grate, J.W., Martin, S.J., White, R.M., Frye, G.C.: Acoustic wave microsensors Part I. Anal. Chem. 65(21), 940 (1993)CrossRef Grate, J.W., Martin, S.J., White, R.M., Frye, G.C.: Acoustic wave microsensors Part I. Anal. Chem. 65(21), 940 (1993)CrossRef
9.
go back to reference Hager, H.E.: Fluid property evaluation by piezoelectric crystals operating in the thickness shear mode. Chem. Eng. Commun. 43, 25–38 (1986)MathSciNetCrossRef Hager, H.E.: Fluid property evaluation by piezoelectric crystals operating in the thickness shear mode. Chem. Eng. Commun. 43, 25–38 (1986)MathSciNetCrossRef
10.
go back to reference Kovacs, G., Vellekoop, M.J., Haueis, R., Lubking, G.W., Venema, A.: A love wave sensor for (bio) chemical sensing in liquids. Sensors Actuat. A 43, 38–43 (1994)CrossRef Kovacs, G., Vellekoop, M.J., Haueis, R., Lubking, G.W., Venema, A.: A love wave sensor for (bio) chemical sensing in liquids. Sensors Actuat. A 43, 38–43 (1994)CrossRef
11.
go back to reference Vasile, C.F., Thompson, R.B.: Excitation of horizontally polarized shear elastic waves by electromagnetic transducers with periodic permanent magnets. J. Appl. Phys. 50, 2583–2598 (1979)CrossRef Vasile, C.F., Thompson, R.B.: Excitation of horizontally polarized shear elastic waves by electromagnetic transducers with periodic permanent magnets. J. Appl. Phys. 50, 2583–2598 (1979)CrossRef
12.
go back to reference Rajagopal, P., Lowe, M.J.S.: Scattering of the fundamental shear horizontal guided wave by part-thickness crack in an isotropic plate. J. Acoust. Soc. Am. 124, 2895–2904 (2008)CrossRef Rajagopal, P., Lowe, M.J.S.: Scattering of the fundamental shear horizontal guided wave by part-thickness crack in an isotropic plate. J. Acoust. Soc. Am. 124, 2895–2904 (2008)CrossRef
13.
go back to reference Bostrӧm, A., Golub, M.: Elastic SH wave propagation in a layered anisotropic plate with interface damage modelled by spring boundary conditions. Q. J. Mech. Appl. Math. 62, 39–51 (2008)CrossRef Bostrӧm, A., Golub, M.: Elastic SH wave propagation in a layered anisotropic plate with interface damage modelled by spring boundary conditions. Q. J. Mech. Appl. Math. 62, 39–51 (2008)CrossRef
14.
go back to reference Zhao, X., Rose, J.L.: Guided circumferential shear horizontal waves in an isotropic hollow cylinder. J. Acoust. Soc. Am. 115, 1912–1926 (2004)CrossRef Zhao, X., Rose, J.L.: Guided circumferential shear horizontal waves in an isotropic hollow cylinder. J. Acoust. Soc. Am. 115, 1912–1926 (2004)CrossRef
15.
go back to reference Valier-Brasier, T., Potel, C., Bruneau, M.: Shear acoustic waves polarized along the ridged surface of an isotropic solid plate: mode coupling effects due to the shape profile. J. Appl. Phys. 108, 1–9 (2010)CrossRef Valier-Brasier, T., Potel, C., Bruneau, M.: Shear acoustic waves polarized along the ridged surface of an isotropic solid plate: mode coupling effects due to the shape profile. J. Appl. Phys. 108, 1–9 (2010)CrossRef
16.
go back to reference Li, W., Xu, C., Cho, Y.: Third harmonic generation of shear horizontal guided waves propagation in plate-like structures. JKSNT. 36, 149–154 (2016)CrossRef Li, W., Xu, C., Cho, Y.: Third harmonic generation of shear horizontal guided waves propagation in plate-like structures. JKSNT. 36, 149–154 (2016)CrossRef
17.
go back to reference Ben salah, I., Njeh, A., Ben Ghozlen, M.H.: The peano-series solution for modeling shear horizontal waves in piezoelectric plates, EPJ Web of Conferences. 29, 00044 (2012). Ben salah, I., Njeh, A., Ben Ghozlen, M.H.: The peano-series solution for modeling shear horizontal waves in piezoelectric plates, EPJ Web of Conferences. 29, 00044 (2012).
18.
go back to reference Chen, C., Zhang, R., Cao, W.: Theoretical study on guided wave propagation in (1–x)Pb(Mg1/3Nb2/3)O3–xPbTiO3(x = 0.29 and 0.33) single crystal plates. J. Phys. D: Appl. Phys. 42, 095411 (2009)CrossRef Chen, C., Zhang, R., Cao, W.: Theoretical study on guided wave propagation in (1–x)Pb(Mg1/3Nb2/3)O3xPbTiO3(x = 0.29 and 0.33) single crystal plates. J. Phys. D: Appl. Phys. 42, 095411 (2009)CrossRef
19.
go back to reference Aleomraninejad, S.M.A., Ghalandari, M., BabayarRazlighi, B., Lavaei, L.: Variational method to spatial soliton propagation in a waveguide with periodic parabolic index profile. Opt. Int. J. Light Electron Opt. 142, 651–656 (2017)CrossRef Aleomraninejad, S.M.A., Ghalandari, M., BabayarRazlighi, B., Lavaei, L.: Variational method to spatial soliton propagation in a waveguide with periodic parabolic index profile. Opt. Int. J. Light Electron Opt. 142, 651–656 (2017)CrossRef
20.
go back to reference Wang, Y., Song, W., Sun, E., Zhang, R., Cao, W.: Tunable passband in one-dimensional phononic crystal containing a piezoelectric 0.62Pb(Mg1/3Nb2/3)O3–0.38PbTiO3 single crystal defect layer. Phys. E 60, 37–41 (2014)CrossRef Wang, Y., Song, W., Sun, E., Zhang, R., Cao, W.: Tunable passband in one-dimensional phononic crystal containing a piezoelectric 0.62Pb(Mg1/3Nb2/3)O3–0.38PbTiO3 single crystal defect layer. Phys. E 60, 37–41 (2014)CrossRef
21.
go back to reference Kuo, C.K.: A novel method for finding new multi-soliton wave solutions of the completely integrable equations. Opt. Int. J. Light Electron Opt. 139, 283–290 (2017)CrossRef Kuo, C.K.: A novel method for finding new multi-soliton wave solutions of the completely integrable equations. Opt. Int. J. Light Electron Opt. 139, 283–290 (2017)CrossRef
22.
go back to reference Adler, E.L.: SAW and pseudo-SAW properties using matrix methods. IEEE TUFFC 41, 699–705 (1994)CrossRef Adler, E.L.: SAW and pseudo-SAW properties using matrix methods. IEEE TUFFC 41, 699–705 (1994)CrossRef
23.
go back to reference Cao, X., Jin, F., Jeon, I.: Calculation of propagation properties of Lamb waves in a functionally graded material (FGM) plate by power series technique. NDT E Int. 44, 84–92 (2011)CrossRef Cao, X., Jin, F., Jeon, I.: Calculation of propagation properties of Lamb waves in a functionally graded material (FGM) plate by power series technique. NDT E Int. 44, 84–92 (2011)CrossRef
24.
go back to reference Bouhdima, M.S., Zagrouba, M., Ben Ghozlen, M.H.: The power series technique and detection of zero-group velocity Lamb waves in a functionally graded material (FGM) plate. CJP. 90, 159–164 (2012)CrossRef Bouhdima, M.S., Zagrouba, M., Ben Ghozlen, M.H.: The power series technique and detection of zero-group velocity Lamb waves in a functionally graded material (FGM) plate. CJP. 90, 159–164 (2012)CrossRef
25.
go back to reference Zagrouba, M., Bouhdima, M.S., Ben Ghozlen, M.H.: S1-ZGV modes of a linear and nonlinear profile for functionally graded material using power series technique. Adv. Acoust. Vib. 2014, 401042 (2014) Zagrouba, M., Bouhdima, M.S., Ben Ghozlen, M.H.: S1-ZGV modes of a linear and nonlinear profile for functionally graded material using power series technique. Adv. Acoust. Vib. 2014, 401042 (2014)
26.
go back to reference Zagrouba, M., Bouhdima, M.S., Ben Ghozlen, M.H.: Numerical study of S1 zero group velocity Lamb modes for nonlinear functionally graded materials. CJP 94, 1189–1194 (2016)CrossRef Zagrouba, M., Bouhdima, M.S., Ben Ghozlen, M.H.: Numerical study of S1 zero group velocity Lamb modes for nonlinear functionally graded materials. CJP 94, 1189–1194 (2016)CrossRef
27.
go back to reference Lewis, M.F.: Surface skimming bulk waves. SSBW Ultras. Symp. Proc. 77, 744–752 (1978) Lewis, M.F.: Surface skimming bulk waves. SSBW Ultras. Symp. Proc. 77, 744–752 (1978)
28.
go back to reference Fukuhara, M., Kuwano, Y.: Propagation characteristics of SH ultrasonic waves through the surface depth of isotropic medium. NDT E Int. 31, 201–210 (1998)CrossRef Fukuhara, M., Kuwano, Y.: Propagation characteristics of SH ultrasonic waves through the surface depth of isotropic medium. NDT E Int. 31, 201–210 (1998)CrossRef
29.
go back to reference Kim, I.K., Kim, Y.Y.: Shear horizontal wave transduction in plates by magnetostrictive gratings. J. Mech. Sci. Tech. 21, 693–698 (2007)CrossRef Kim, I.K., Kim, Y.Y.: Shear horizontal wave transduction in plates by magnetostrictive gratings. J. Mech. Sci. Tech. 21, 693–698 (2007)CrossRef
30.
go back to reference Li, W., Cho, Y., Achenbach, J.D.: Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart. Mater. Struct. 21, 085019 (2012)CrossRef Li, W., Cho, Y., Achenbach, J.D.: Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart. Mater. Struct. 21, 085019 (2012)CrossRef
31.
go back to reference Fortunko, C.M., King, R.B.: Nondestructive evaluation of planar defects in using low-frequency shear horizontal waves. J. Appl. Phys. 53, 3450–3458 (1982)CrossRef Fortunko, C.M., King, R.B.: Nondestructive evaluation of planar defects in using low-frequency shear horizontal waves. J. Appl. Phys. 53, 3450–3458 (1982)CrossRef
32.
go back to reference Hirao, M., Ogi, H.: An SH-wave EMAT technique for gas pipeline inspection. NDT E Int. 32, 127–132 (1999)CrossRef Hirao, M., Ogi, H.: An SH-wave EMAT technique for gas pipeline inspection. NDT E Int. 32, 127–132 (1999)CrossRef
33.
go back to reference Crom, B.L., Castaings, M.: Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers. J. Acoust. Soc. Am. 127, 2220–2230 (2010)CrossRef Crom, B.L., Castaings, M.: Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers. J. Acoust. Soc. Am. 127, 2220–2230 (2010)CrossRef
34.
go back to reference Filho, J.F.M.R., Tremblay, N., Fonseca, G.S.D., Belanger, P.: The feasibility of structural health monitoring using the fundamental shear horizontal guided wave in a thin aluminum plate. Materials 10, 551 (2017)CrossRef Filho, J.F.M.R., Tremblay, N., Fonseca, G.S.D., Belanger, P.: The feasibility of structural health monitoring using the fundamental shear horizontal guided wave in a thin aluminum plate. Materials 10, 551 (2017)CrossRef
35.
go back to reference Rose, J.L., Borigo, C., Owens, S., Reese, S.A.: Rapid large area inspection from a single sensor position: a guided shear wave phased array scan, materials. Evaluation. 75, 671–678 (2017) Rose, J.L., Borigo, C., Owens, S., Reese, S.A.: Rapid large area inspection from a single sensor position: a guided shear wave phased array scan, materials. Evaluation. 75, 671–678 (2017)
36.
go back to reference Liu, G., Philtron, J., Zhu, Y., Rose, J.L., Han, M.: Detection of fundamental shear horizontal guided waves using a surface-bonded chirped-fiber-Bragg-grating Fabry-Perot interferometer. JLT 36(11), 2286–2294 (2018) Liu, G., Philtron, J., Zhu, Y., Rose, J.L., Han, M.: Detection of fundamental shear horizontal guided waves using a surface-bonded chirped-fiber-Bragg-grating Fabry-Perot interferometer. JLT 36(11), 2286–2294 (2018)
37.
go back to reference Castaings, M., Hosten, B.: Lamb and SH waves generated and detected by air-coupled ultrasonic transducers in composite material plates. NDT E Int. 34, 249–258 (2001)CrossRef Castaings, M., Hosten, B.: Lamb and SH waves generated and detected by air-coupled ultrasonic transducers in composite material plates. NDT E Int. 34, 249–258 (2001)CrossRef
38.
go back to reference Josse, F., Bender, F., Cernosek, R.W.: Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids. Anal. Chem. 73, 5937–5944 (2001)CrossRef Josse, F., Bender, F., Cernosek, R.W.: Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids. Anal. Chem. 73, 5937–5944 (2001)CrossRef
39.
go back to reference Lee, J.S., Kim, H.W., Jeon, B.C.: Damage detection in a plate using beam-focused shear-horizontal wave magnetostrictive patch transducers. AIAA J. 48, 654–661 (2010)CrossRef Lee, J.S., Kim, H.W., Jeon, B.C.: Damage detection in a plate using beam-focused shear-horizontal wave magnetostrictive patch transducers. AIAA J. 48, 654–661 (2010)CrossRef
40.
go back to reference Wang, Q., Varadan, V.K.: Wave propagation in piezoelectric bounded plates by use of interdigital transducer. I. Dispersion characteristics. Int. J. Solids. Struct. 39, 1119–1130 (2002)MATHCrossRef Wang, Q., Varadan, V.K.: Wave propagation in piezoelectric bounded plates by use of interdigital transducer. I. Dispersion characteristics. Int. J. Solids. Struct. 39, 1119–1130 (2002)MATHCrossRef
41.
go back to reference Pastureaud, T., Laude, V., Ballandras, S.: Stable scattering-matrix method for surface acoustic waves in piezoelectric multilayers. Appl. Phys. Lett. 80, 2544–2546 (2002)CrossRef Pastureaud, T., Laude, V., Ballandras, S.: Stable scattering-matrix method for surface acoustic waves in piezoelectric multilayers. Appl. Phys. Lett. 80, 2544–2546 (2002)CrossRef
42.
go back to reference Lowe, M.J.S.: Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(4), 525–542 (1995)CrossRef Lowe, M.J.S.: Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(4), 525–542 (1995)CrossRef
43.
go back to reference Yu, X., Manogharan, P., Fan, Z., Rajagopal, P.: Shear horizontal feature guided ultrasonic waves in plate structures with 90° transverse bends. Ultras. 65, 370–379 (2016)CrossRef Yu, X., Manogharan, P., Fan, Z., Rajagopal, P.: Shear horizontal feature guided ultrasonic waves in plate structures with 90° transverse bends. Ultras. 65, 370–379 (2016)CrossRef
44.
go back to reference Nie, G., Liu, J., Kong, Y., Fang, X.: SH waves in (1–x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 piezoelectric layered structures loaded with viscous liquid. Acta Mech. Solida Sin. 29, 479–489 (2016)CrossRef Nie, G., Liu, J., Kong, Y., Fang, X.: SH waves in (1–x)Pb(Mg1/3Nb2/3)O3xPbTiO3 piezoelectric layered structures loaded with viscous liquid. Acta Mech. Solida Sin. 29, 479–489 (2016)CrossRef
45.
go back to reference Cao, X., Jin, F., Jeon, I.: Characterization of the variation of the material properties in a freestanding inhomogeneous thin film. Phys. Lett. A 375, 220–224 (2010)CrossRef Cao, X., Jin, F., Jeon, I.: Characterization of the variation of the material properties in a freestanding inhomogeneous thin film. Phys. Lett. A 375, 220–224 (2010)CrossRef
46.
go back to reference Bernhard, J., Michael, J.V.: Properties of love waves, applications in sensors. Smart. Mater. Struct. 6, 668–679 (1997)CrossRef Bernhard, J., Michael, J.V.: Properties of love waves, applications in sensors. Smart. Mater. Struct. 6, 668–679 (1997)CrossRef
47.
go back to reference Kuznetsova, I.E., Zaitsev, B.D., Joshi, S.G., Borodina, I.A.: Investigation of acoustic waves in thin plates of Niobate and Lithium tantalite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 322–328 (2001)CrossRef Kuznetsova, I.E., Zaitsev, B.D., Joshi, S.G., Borodina, I.A.: Investigation of acoustic waves in thin plates of Niobate and Lithium tantalite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 322–328 (2001)CrossRef
48.
go back to reference Zaitsev, B.D., Joshi, S.G., Kuznetsova, I.E.: Investigation of quasi-shear-horizontal acoustic waves in thin plates of lithium niobate. Smart. Mater. Struct. 6, 739–744 (1997)CrossRef Zaitsev, B.D., Joshi, S.G., Kuznetsova, I.E.: Investigation of quasi-shear-horizontal acoustic waves in thin plates of lithium niobate. Smart. Mater. Struct. 6, 739–744 (1997)CrossRef
Metadata
Title
Investigation of SH wave propagation in piezoelectric plates
Authors
Mouldi Zagrouba
Mohamed Shili Bouhdima
Publication date
22-06-2021
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 9/2021
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-021-02990-x

Other articles of this Issue 9/2021

Acta Mechanica 9/2021 Go to the issue

Premium Partners