Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 2/2020

27-08-2020 | Original Paper

Investigation of substrate materials for graphene oxide absorber loaded antenna array increased ambient temperature

Authors: Surekha Rani, Anupma Marwaha, Sanjay Marwaha

Published in: Photonic Network Communications | Issue 2/2020

Login to get access
share
SHARE

Abstract

Integration of electromagnetic (EM) wave absorber with patch antenna array on single substrate provides a very efficient way to improve the radiation pattern of array by reducing mutual coupling effect. The placing of absorber on array assembly may however affect the radiation characteristics due to the heat generated from absorbed power. As the microwave absorber dissipates the inter-element waves in terms of heat via absorption, the ambient temperature of array increases which consequently varies the patch dimensions and dielectric properties of the substrate thus shifting the resonant frequency of array. These effects have been investigated for graphene oxide-based absorber loaded rectangular patch array designed on different substrates such as silicon, gallium arsenide, aluminium oxide and Roger RO3210. On the basis of percentage variation in return loss and effective bandwidth an optimum substrate is proposed which undergoes minimize temperature effect without deteriorating the gain and directivity of the antenna array. The results show that for Graphene oxide-based absorber with Roger RO3210 substrate having high melting temperature of 4236.85 °C, side lobe level of array is reduced from 3.737 dB to 2.551 dB with increased major lobe gain. Due to absorbed power, ambient temperature of array increased from room temperature (27 °C) to 187 °C significantly shifting the resonant frequency from 10.4 GHz to 8.9 GHz. Further the comparison results show that with aluminium oxide substrate the array exhibits minimum temperature sensitivity hence proving to be a better choice for design of microwave absorber loaded antenna array.
Literature
1.
go back to reference Zhang, Y., Ng, B.P., Wan, Q.: Sidelobe suppression for adaptive beamforming with sparse constraint on beam pattern. Electron. Lett. 44, 615–616 (2008) CrossRef Zhang, Y., Ng, B.P., Wan, Q.: Sidelobe suppression for adaptive beamforming with sparse constraint on beam pattern. Electron. Lett. 44, 615–616 (2008) CrossRef
2.
go back to reference Monteiro, S.N., Virani, H.G.: Improved null steering with sidelobe canceller for linear antenna arrays. Int. J. Adv. Res. Comp. Commun. Eng. 4. 97–100 (2015). CrossRef Monteiro, S.N., Virani, H.G.: Improved null steering with sidelobe canceller for linear antenna arrays. Int. J. Adv. Res. Comp. Commun. Eng. 4. 97–100 (2015). CrossRef
3.
go back to reference Karim, H., Viberg, M.: Two decades of array signal processing research: The parametric approach. IEEE Signal Process. 13, 67–94 (1996). CrossRef Karim, H., Viberg, M.: Two decades of array signal processing research: The parametric approach. IEEE Signal Process. 13, 67–94 (1996). CrossRef
4.
go back to reference Supreet Kaur sidhu: Manjeet Singh Patterh: Analysis of mutual coupling effects on linear antenna array. Int. J. Latest Trends Eng. Technol. 7, 685–689 (2016) Supreet Kaur sidhu: Manjeet Singh Patterh: Analysis of mutual coupling effects on linear antenna array. Int. J. Latest Trends Eng. Technol. 7, 685–689 (2016)
5.
go back to reference Ibrahim, H.M.: Null steering by real-weight control—a method of decoupling the weights. IEEE Trans. Antennas Propag. 39, 1648–1650 (1991) CrossRef Ibrahim, H.M.: Null steering by real-weight control—a method of decoupling the weights. IEEE Trans. Antennas Propag. 39, 1648–1650 (1991) CrossRef
6.
go back to reference Rani, S., Marwaha, A., Marwaha, S.: Utilization of Graphene oxide-based microwave absorber for pattern enhancement of patch antenna array. J. Nanophotonics 12(3), 1–13 (2018) CrossRef Rani, S., Marwaha, A., Marwaha, S.: Utilization of Graphene oxide-based microwave absorber for pattern enhancement of patch antenna array. J. Nanophotonics 12(3), 1–13 (2018) CrossRef
7.
go back to reference Chen, S.: Broadband optical and microwave nonlinear response in topological insulator. Opt. Mater. Express 4, 587–597 (2014) CrossRef Chen, S.: Broadband optical and microwave nonlinear response in topological insulator. Opt. Mater. Express 4, 587–597 (2014) CrossRef
8.
go back to reference Jiajie Pei, Jiong Yang, Tanju Yildirim, Han Zhang, and Yuerui Lu: Many-body complexes in 2D semiconductors, Adv. Mater. 31 (2), 1706945 (1–19) (2018). Jiajie Pei, Jiong Yang, Tanju Yildirim, Han Zhang, and Yuerui Lu: Many-body complexes in 2D semiconductors, Adv. Mater. 31 (2), 1706945 (1–19) (2018).
9.
go back to reference Shi, J., Li, Z., Sang, D.K., Xiang, Y., Li, J., Zhang, S., Zhang, H.: THz photonics in two dimensional materials and metamaterials: properties. Devices Prospects J. Mater. Chem. C 6(6), 1291–1306 (2017) CrossRef Shi, J., Li, Z., Sang, D.K., Xiang, Y., Li, J., Zhang, S., Zhang, H.: THz photonics in two dimensional materials and metamaterials: properties. Devices Prospects J. Mater. Chem. C 6(6), 1291–1306 (2017) CrossRef
10.
go back to reference Yaqin Jiang, Lili Miao, Guobao Jiang, Yu Chen, Xiang Qi, Xiao-fang Jiang, Han Zhang, Shuangchun Wen: Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Scientific Reports 5, 16372 (1–12) (2015). Yaqin Jiang, Lili Miao, Guobao Jiang, Yu Chen, Xiang Qi, Xiao-fang Jiang, Han Zhang, Shuangchun Wen: Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Scientific Reports 5, 16372 (1–12) (2015).
11.
go back to reference Mark Danovich, Viktor Zólyomi, Vladimir I Fal’ko and Igor L Aleiner: Auger recombination of dark excitons in WS 2 and WSe 2 monolayers. 2D Materials. 2 (3), 035011 (2016). Mark Danovich, Viktor Zólyomi, Vladimir I Fal’ko and Igor L Aleiner: Auger recombination of dark excitons in WS 2 and WSe 2 monolayers. 2D Materials. 2 (3), 035011 (2016).
12.
go back to reference Lu, Lu, Liang, Z., Leiming, Wu, Chen, YunXiang, Song, Y., Sathish Chander Dhanabalan, Joice Sophia Ponraj, Biqin Dong, Yuanjiang Xiang, Feng Xing, Dianyuan Fan, and Han Zhang: Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability. Laser Photonics Rev. 12(1), 1–10 (2018). Lu, Lu, Liang, Z., Leiming, Wu, Chen, YunXiang, Song, Y., Sathish Chander Dhanabalan, Joice Sophia Ponraj, Biqin Dong, Yuanjiang Xiang, Feng Xing, Dianyuan Fan, and Han Zhang: Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability. Laser Photonics Rev. 12(1), 1–10 (2018).
13.
go back to reference Xiantao Jiang, Shunxiang Liu, Weiyuan Liang, Shaojuan Luo, Zhiliang He, Yanqi Ge, Huide Wang, Rui Cao, Feng Zhang, Qiao Wen, Jianqing Li, Qiaoliang Bao, Dianyuan Fan, and Han Zhang: Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 12, 1700229 (1–10), (2017). Xiantao Jiang, Shunxiang Liu, Weiyuan Liang, Shaojuan Luo, Zhiliang He, Yanqi Ge, Huide Wang, Rui Cao, Feng Zhang, Qiao Wen, Jianqing Li, Qiaoliang Bao, Dianyuan Fan, and Han Zhang: Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 12, 1700229 (1–10), (2017).
14.
go back to reference Los, J. H., Zakharchenko, K. V., Katsnelson, M. I., Fasolino, A.: Melting temperature of graphene. Phys. Rev. B. 91, 1–6 (2015). CrossRef Los, J. H., Zakharchenko, K. V., Katsnelson, M. I., Fasolino, A.: Melting temperature of graphene. Phys. Rev. B. 91, 1–6 (2015). CrossRef
15.
go back to reference Weiss, M.A.: Temperature compensation of microstrip antennas. IEEE Ball Aerospace Syst. Division Boulder., 347–451 (1981). Weiss, M.A.: Temperature compensation of microstrip antennas. IEEE Ball Aerospace Syst. Division Boulder., 347–451 (1981).
16.
go back to reference Maurya, S., Yadava, R. L., Yadav, R. K.: Effect of temperature variation on microstrip patch antenna and temperature compensation technique. Int. J. Wireless Commun. Mobile Comput. 1, 35–40 (2013). CrossRef Maurya, S., Yadava, R. L., Yadav, R. K.: Effect of temperature variation on microstrip patch antenna and temperature compensation technique. Int. J. Wireless Commun. Mobile Comput. 1, 35–40 (2013). CrossRef
17.
go back to reference Habib Ullah, M., Mohammad Tariqul Islam, Mandeep Singh Jit Singh, Norbahiah Misran: Design of a compact multiband antenna on Al 2O 3 ceramic material substrate. Proceeding of the 15th International Conference on Computer and Information Technology, ICCIT (2012). Habib Ullah, M., Mohammad Tariqul Islam, Mandeep Singh Jit Singh, Norbahiah Misran: Design of a compact multiband antenna on Al 2O 3 ceramic material substrate. Proceeding of the 15th International Conference on Computer and Information Technology, ICCIT (2012).
18.
go back to reference M. Abdel, Ain Shams, H. Ghali, H.F. Ragaie, H. Haddara: Microstrip patch antenna using Silicon micromachining technology, Proceedings of the Twentieth National Radio Science Conference (NRSC'2003) (IEEE Cat. No.03EX665), (2003). M. Abdel, Ain Shams, H. Ghali, H.F. Ragaie, H. Haddara: Microstrip patch antenna using Silicon micromachining technology, Proceedings of the Twentieth National Radio Science Conference (NRSC'2003) (IEEE Cat. No.03EX665), (2003).
19.
go back to reference Pan Li-na, Jia Shi-xing, Hou Fang, Zhu Jian, Yu Yuan-wei: Millimeter-wave design and fabrication of GaAs micromachined patch antenna. 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, (2012). Pan Li-na, Jia Shi-xing, Hou Fang, Zhu Jian, Yu Yuan-wei: Millimeter-wave design and fabrication of GaAs micromachined patch antenna. 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, (2012).
20.
go back to reference Balanis, C.A.: Antenna Theory, 3rd edn. John Wiley, New York (2005) Balanis, C.A.: Antenna Theory, 3rd edn. John Wiley, New York (2005)
21.
go back to reference Kevin Rubrice, Xavier Castel, Mohamed Himdi and Patrick Parneix: Dielectric characteristics and microwave absorption of graphene composite materials. J. Mater. 825, 1–10 (2016). Kevin Rubrice, Xavier Castel, Mohamed Himdi and Patrick Parneix: Dielectric characteristics and microwave absorption of graphene composite materials. J. Mater. 825, 1–10 (2016).
22.
go back to reference T. Wang, R. Han, G. Tan, J. Wei, L. Qiao, F. Li: Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite. J. Appl. Phys. 112 (2012). T. Wang, R. Han, G. Tan, J. Wei, L. Qiao, F. Li: Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite. J. Appl. Phys. 112 (2012).
23.
go back to reference Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, X. Zheng: Synthesis of Nitrogen-Doped Graphene Decorated by Superparamagnetic Fe 3O 4 Nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon. 115 (2017). Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, X. Zheng: Synthesis of Nitrogen-Doped Graphene Decorated by Superparamagnetic Fe 3O 4 Nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon. 115 (2017).
24.
go back to reference Yi, Da, Wei, X., Yili, Xu: Experimental demonstration of transparent microwave absorber-based on graphene. IEEE Trans. Microw. Theory Tech. 16, 1–4 (2016) Yi, Da, Wei, X., Yili, Xu: Experimental demonstration of transparent microwave absorber-based on graphene. IEEE Trans. Microw. Theory Tech. 16, 1–4 (2016)
25.
go back to reference Kraus, J.D.: Antennas. Second edition, Tata McGraw Hill, New York (2001) Kraus, J.D.: Antennas. Second edition, Tata McGraw Hill, New York (2001)
Metadata
Title
Investigation of substrate materials for graphene oxide absorber loaded antenna array increased ambient temperature
Authors
Surekha Rani
Anupma Marwaha
Sanjay Marwaha
Publication date
27-08-2020
Publisher
Springer US
Published in
Photonic Network Communications / Issue 2/2020
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-020-00908-6