Skip to main content
Top
Published in: Journal of Electronic Materials 8/2021

28-05-2021 | Original Research Article

Investigation of the Influence of Annealing Temperature on the Structural and Magnetic Properties of MgFe2O4

Authors: Pradeep Prajapat, Saroj Dhaka, H. S. Mund

Published in: Journal of Electronic Materials | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, nanocrystalline Mg-ferrites have been synthesized by the low-cost sol-gel auto-combustion method using iron and magnesium nitrates as starting materials. The as-prepared sample was annealed at temperatures of 200°C, 400°C, 600°C, 800°C, and 1000°C in an air atmosphere to investigate the effect of annealing temperature on the physical properties. The structural and magnetic properties of the annealed ferrites were studied using x-ray diffraction, Fourier transform infrared (FTIR) and Raman spectroscopy, and vibrating-sample magnetometer. The crystalline size of the nano-crystallites increased from 12 nm to 51 nm with an increase in annealing temperature from 200°C to 1000°C. Raman spectroscopy measurements revealed the presence of a spinel structure where A1g and Eg modes occur along different bond lengths of Fe/Mg-O, due to different ionic radii of Mg+2 and Fe+3 ions. The two prominent vibration frequency peaks along different bond lengths for the cubic spinel materials were confirmed using the FTIR spectra. The saturation magnetization was found to increase from 0.71 μB/f.u. to 1.16 μB/f.u. with increasing annealing temperature from 200°C to 1000°C. The magnetization results show that the magnetic properties of the nanocrystalline Mg-ferrites improved with annealing temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K.C. Das, and S.S. Das, Rapid catalytic degradation of malachite green by MgFe2O4 nanoparticles in presence of H2O2J. Alloys Compd. 828, 154462 (2020).CrossRef K.C. Das, and S.S. Das, Rapid catalytic degradation of malachite green by MgFe2O4 nanoparticles in presence of H2O2J. Alloys Compd. 828, 154462 (2020).CrossRef
2.
go back to reference S.J. Uke, S.P. Mardikar, D.R. Bambole, Y. Kumar, and N. Chaudhari, Sol-gel citrate synthesized Zn doped MgFe2O4 nanocrystals: a promising supercapacitor electrode materialMater. Sci. Energy Technol. 3, 446 (2020). S.J. Uke, S.P. Mardikar, D.R. Bambole, Y. Kumar, and N. Chaudhari, Sol-gel citrate synthesized Zn doped MgFe2O4 nanocrystals: a promising supercapacitor electrode materialMater. Sci. Energy Technol. 3, 446 (2020).
3.
go back to reference T.V. Sagar, T.S. Rao, and K.C.B. Naidu, Effect of calcination temperature on optical, magnetic and dielectric properties of Sol-Gel synthesized Ni0.2Mg0.8-xZnxFe2O4 (x = 0.0–0.8)Ceram. Int. 46, 11515 (2020).CrossRef T.V. Sagar, T.S. Rao, and K.C.B. Naidu, Effect of calcination temperature on optical, magnetic and dielectric properties of Sol-Gel synthesized Ni0.2Mg0.8-xZnxFe2O4 (x = 0.0–0.8)Ceram. Int. 46, 11515 (2020).CrossRef
4.
go back to reference S. Patil, K.S. Anantharaju, D. Rangappa, Y.S. Vidya, S.C. Sharma, L. Renuka, and H. Nagabhushana, Magnetic Eu-doped MgFe2O4 nanomaterials: an investigation of their structural, optical and enhanced visible-light-driven photocatalytic performanceEnviron. Nanotechnol. Monit. Manag. 13, 100268 (2020). S. Patil, K.S. Anantharaju, D. Rangappa, Y.S. Vidya, S.C. Sharma, L. Renuka, and H. Nagabhushana, Magnetic Eu-doped MgFe2O4 nanomaterials: an investigation of their structural, optical and enhanced visible-light-driven photocatalytic performanceEnviron. Nanotechnol. Monit. Manag. 13, 100268 (2020).
5.
go back to reference A.G. Abraham, A. Manikandan, E. Manikandan, S. Vadivel, S.K. Jaganathan, A. Baykal, and P.S. Renganathan, Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocompositesJ. Magn. Mag. Mater. 452, 380 (2018).CrossRef A.G. Abraham, A. Manikandan, E. Manikandan, S. Vadivel, S.K. Jaganathan, A. Baykal, and P.S. Renganathan, Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocompositesJ. Magn. Mag. Mater. 452, 380 (2018).CrossRef
6.
go back to reference I. Khishigdemberel, E. Uyanga, H. Hirazawa, and D. Sangaa, Influence of Cu dope on the structural behavior of MgFe2O4 at various temperaturesPhys. B 544, 73 (2018).CrossRef I. Khishigdemberel, E. Uyanga, H. Hirazawa, and D. Sangaa, Influence of Cu dope on the structural behavior of MgFe2O4 at various temperaturesPhys. B 544, 73 (2018).CrossRef
7.
go back to reference M. Joulaei, K. Hedayati, and D. Ghanbari, Investigation of magnetic, mechanical and flame retardant properties of polymeric nanocomposites: Green synthesis of MgFe2O4 by lime and orange extractsCompos. Part B 176, 107345 (2019).CrossRef M. Joulaei, K. Hedayati, and D. Ghanbari, Investigation of magnetic, mechanical and flame retardant properties of polymeric nanocomposites: Green synthesis of MgFe2O4 by lime and orange extractsCompos. Part B 176, 107345 (2019).CrossRef
8.
go back to reference J.Y. Patil, D.Y. Nadargi, I.S. Mulla, and S.S. Suryavanshi, Cerium doped MgFe2O4 nanocomposites: highly sensitive and fast response-recoverable acetone gas sensorHeliyon 5, e01489 (2019).CrossRef J.Y. Patil, D.Y. Nadargi, I.S. Mulla, and S.S. Suryavanshi, Cerium doped MgFe2O4 nanocomposites: highly sensitive and fast response-recoverable acetone gas sensorHeliyon 5, e01489 (2019).CrossRef
9.
go back to reference X. Wang, X. Kan, X. Liu, S. Feng, G. Zheng, Z. Cheng, W. Wang, Z. Chen, and C. Liu, Characterization of microstructure and magnetic properties for Co2+ ions doped MgFe2O4 spinel ferritesMater. Today Commun. 25, 101414 (2020).CrossRef X. Wang, X. Kan, X. Liu, S. Feng, G. Zheng, Z. Cheng, W. Wang, Z. Chen, and C. Liu, Characterization of microstructure and magnetic properties for Co2+ ions doped MgFe2O4 spinel ferritesMater. Today Commun. 25, 101414 (2020).CrossRef
10.
go back to reference J. Chandradass, A.H. Jadhav, K.H. Kim, and H. Kim, Influence of processing methodology on the structural and magnetic behavior of MgFe2O4 nanopowdersJ. Alloys Compd. 517, 164 (2012).CrossRef J. Chandradass, A.H. Jadhav, K.H. Kim, and H. Kim, Influence of processing methodology on the structural and magnetic behavior of MgFe2O4 nanopowdersJ. Alloys Compd. 517, 164 (2012).CrossRef
11.
go back to reference M.P. Reddy, R.A. Shakoor, A.M.A. Mohamed, M. Gupta, and Q. Huang, Effect of sintering temperature on the structural and magnetic properties of MgFe2O4 ceramics prepared by spark plasma sinteringCeram. Int. 42, 4221 (2016).CrossRef M.P. Reddy, R.A. Shakoor, A.M.A. Mohamed, M. Gupta, and Q. Huang, Effect of sintering temperature on the structural and magnetic properties of MgFe2O4 ceramics prepared by spark plasma sinteringCeram. Int. 42, 4221 (2016).CrossRef
12.
go back to reference S.V. Bhandare, R. Kumar, A.V. Anupama, H.K. Choudhary, V.M. Jali, and B. Sahoo, Annealing temperature dependent structural and magnetic properties of MnFe2O4 nanoparticles grown by sol-gel auto-combustion methodJ. Magn. Magn. Mater. 433, 29 (2017).CrossRef S.V. Bhandare, R. Kumar, A.V. Anupama, H.K. Choudhary, V.M. Jali, and B. Sahoo, Annealing temperature dependent structural and magnetic properties of MnFe2O4 nanoparticles grown by sol-gel auto-combustion methodJ. Magn. Magn. Mater. 433, 29 (2017).CrossRef
13.
go back to reference J.Y. Patil, M.S. Khandekar, I.S. Mulla, and S.S. Suryavanshi, Combustion synthesis of magnesium ferrite as liquid petroleum gas (LPG) sensor: effect of sintering temperatureCurr. App. Phys. 12, 319 (2012).CrossRef J.Y. Patil, M.S. Khandekar, I.S. Mulla, and S.S. Suryavanshi, Combustion synthesis of magnesium ferrite as liquid petroleum gas (LPG) sensor: effect of sintering temperatureCurr. App. Phys. 12, 319 (2012).CrossRef
14.
go back to reference V.D. Sudheesh, N. Thomas, N. Roona, H. Choudhary, B. Sahoo, N. Lakshmi, and V. Sebastian, Synthesis of nanocrystalline spinel ferrite (MFe2O4, M = Zn and Mg) by solution combustion method: influence of fuel to oxidizer ratioJ. Alloys Compd. 742, 577 (2018).CrossRef V.D. Sudheesh, N. Thomas, N. Roona, H. Choudhary, B. Sahoo, N. Lakshmi, and V. Sebastian, Synthesis of nanocrystalline spinel ferrite (MFe2O4, M = Zn and Mg) by solution combustion method: influence of fuel to oxidizer ratioJ. Alloys Compd. 742, 577 (2018).CrossRef
15.
go back to reference Y. Pan, Y. Zhang, X. Wei, C. Yuan, J. Yin, D. Cao, and G. Wang, MgFe2O4nanoparticles as anode materials for lithium-ion batteriesElectrochim Acta 109, 89 (2013).CrossRef Y. Pan, Y. Zhang, X. Wei, C. Yuan, J. Yin, D. Cao, and G. Wang, MgFe2O4nanoparticles as anode materials for lithium-ion batteriesElectrochim Acta 109, 89 (2013).CrossRef
16.
go back to reference P. Heidari, and S.M. Masoudpanah, Structural and magnetic properties of MgFe2O4 powders synthesized by solution combustion method: the effect of fuel typeJ. Mater. Res. Technol. 9, 4469 (2020).CrossRef P. Heidari, and S.M. Masoudpanah, Structural and magnetic properties of MgFe2O4 powders synthesized by solution combustion method: the effect of fuel typeJ. Mater. Res. Technol. 9, 4469 (2020).CrossRef
17.
go back to reference R.V. Godbole, P. Rao, P.S. Alegaonkar, and S. Bhagwat, Influence of fuel to oxidizer ratio on LPG sensing performance of MgFe2O4 nanoparticlesMater. Chem. Phys. 161, 135 (2015).CrossRef R.V. Godbole, P. Rao, P.S. Alegaonkar, and S. Bhagwat, Influence of fuel to oxidizer ratio on LPG sensing performance of MgFe2O4 nanoparticlesMater. Chem. Phys. 161, 135 (2015).CrossRef
18.
go back to reference T.P. Sumangala, C. Mahender, N. Venkataramani, and S. Prasad, A study of nanosized magnesium ferrite particles with high magnetic momentJ. Magn. Magn. Mater. 382, 225 (2015).CrossRef T.P. Sumangala, C. Mahender, N. Venkataramani, and S. Prasad, A study of nanosized magnesium ferrite particles with high magnetic momentJ. Magn. Magn. Mater. 382, 225 (2015).CrossRef
19.
go back to reference Y. Yin, B. Zhang, X. Zhang, J. Xu, and S. Yang, Nano MgFe2O4 synthesized by sol–gel auto-combustion method as anode materials for lithium ion batteriesJ Sol-Gel Sci. Technol. 66, 540 (2013).CrossRef Y. Yin, B. Zhang, X. Zhang, J. Xu, and S. Yang, Nano MgFe2O4 synthesized by sol–gel auto-combustion method as anode materials for lithium ion batteriesJ Sol-Gel Sci. Technol. 66, 540 (2013).CrossRef
20.
go back to reference V.M. Khot, A.B. Salunkhe, N.D. Thorat, M.R. Phadatare, and S.H. Pawar, Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applicationsJ. Magn. Magn. Mater. 332, 48 (2013).CrossRef V.M. Khot, A.B. Salunkhe, N.D. Thorat, M.R. Phadatare, and S.H. Pawar, Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applicationsJ. Magn. Magn. Mater. 332, 48 (2013).CrossRef
21.
go back to reference S. Akbari, S.M. Masoudpanah, S.M. Mirkazemi, and N. Aliyan, PVA assisted coprecipitation synthesis and characterization of MgFe2O4 nanoparticlesCeram. Int. 43, 6263 (2017).CrossRef S. Akbari, S.M. Masoudpanah, S.M. Mirkazemi, and N. Aliyan, PVA assisted coprecipitation synthesis and characterization of MgFe2O4 nanoparticlesCeram. Int. 43, 6263 (2017).CrossRef
22.
go back to reference M.A. Amer, T. Meaa, S. Attalab, and F. Fakhra, Influence of heat treatment on magnetic, structural and elastic properties of as-prepared Mg-nanoferritesJ. Magn. Magn. Mater. 401, 150 (2016).CrossRef M.A. Amer, T. Meaa, S. Attalab, and F. Fakhra, Influence of heat treatment on magnetic, structural and elastic properties of as-prepared Mg-nanoferritesJ. Magn. Magn. Mater. 401, 150 (2016).CrossRef
23.
go back to reference A. Doi, S. Matsushima, K. Obata, R. Maeda, A. Kajima, and K. Kobayashi, Preparation of magnesium ferrite by a malic acid complexJ. Ceram. Soc. Jpn. 122, 645 (2014).CrossRef A. Doi, S. Matsushima, K. Obata, R. Maeda, A. Kajima, and K. Kobayashi, Preparation of magnesium ferrite by a malic acid complexJ. Ceram. Soc. Jpn. 122, 645 (2014).CrossRef
24.
go back to reference M. Azam, S. Riaz, A. Akbar, and S. Naseem, Structural, magnetic and dielectric properties of spinel MgFe2O4 by sol–gel routeJ Sol-Gel Sci Technol. 74, 340 (2015).CrossRef M. Azam, S. Riaz, A. Akbar, and S. Naseem, Structural, magnetic and dielectric properties of spinel MgFe2O4 by sol–gel routeJ Sol-Gel Sci Technol. 74, 340 (2015).CrossRef
25.
go back to reference S.I. Hussein, A.S. Elkady, M.M. Rashad, A.G. Mostafa, and R.M. Megahid, Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol–gel reactionJ. Magn. Magn. Mater. 379, 9 (2015).CrossRef S.I. Hussein, A.S. Elkady, M.M. Rashad, A.G. Mostafa, and R.M. Megahid, Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol–gel reactionJ. Magn. Magn. Mater. 379, 9 (2015).CrossRef
26.
go back to reference H. Aono, H. Hirazawa, T. Naohara, and T. Maehara, Surface study of fine MgFe2O4 ferrite powder prepared by chemical methodsAppl. Surf. Sci. 254, 2319 (2008).CrossRef H. Aono, H. Hirazawa, T. Naohara, and T. Maehara, Surface study of fine MgFe2O4 ferrite powder prepared by chemical methodsAppl. Surf. Sci. 254, 2319 (2008).CrossRef
27.
go back to reference R.A. Candeia, M.A.F. Souza, M.I.B. Bernardi, S.C. Maestrelli, I.M.G. Santos, A.G. Souza, and E. Longo, MgFe2O4 pigment obtained at low temperatureMater. Res. Bull. 41, 183 (2006).CrossRef R.A. Candeia, M.A.F. Souza, M.I.B. Bernardi, S.C. Maestrelli, I.M.G. Santos, A.G. Souza, and E. Longo, MgFe2O4 pigment obtained at low temperatureMater. Res. Bull. 41, 183 (2006).CrossRef
28.
go back to reference J. Chandradass, A.H. Jadhav, and H. Kim, Surfactant modified MgFe2O4 nanopowders by reverse micelle processing: effect of water to surfactant ratio (R) on the particle size and magnetic propertyAppl. Surf. Sci. 258, 3315 (2012).CrossRef J. Chandradass, A.H. Jadhav, and H. Kim, Surfactant modified MgFe2O4 nanopowders by reverse micelle processing: effect of water to surfactant ratio (R) on the particle size and magnetic propertyAppl. Surf. Sci. 258, 3315 (2012).CrossRef
29.
go back to reference J. Nonkumwong, S. Ananta, P. Jantaratana, S. Phumying, S. Maensiri, and L. Srisombat, Phase formation, morphology and magnetic properties of MgFe2O4 nanoparticles synthesized by hydrothermal techniqueJ. Magn. Magn. Mater. 381, 226 (2015).CrossRef J. Nonkumwong, S. Ananta, P. Jantaratana, S. Phumying, S. Maensiri, and L. Srisombat, Phase formation, morphology and magnetic properties of MgFe2O4 nanoparticles synthesized by hydrothermal techniqueJ. Magn. Magn. Mater. 381, 226 (2015).CrossRef
30.
go back to reference S. Ilhan, S.G. Izotova, and A.A. Komlev, Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxidesCeram. Int. 41, 577 (2015).CrossRef S. Ilhan, S.G. Izotova, and A.A. Komlev, Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxidesCeram. Int. 41, 577 (2015).CrossRef
31.
go back to reference K.H.J. Buschow, Handbook of Magnetic Materials, 1st ed., (North Holland: Elsevier, 1995). K.H.J. Buschow, Handbook of Magnetic Materials, 1st ed., (North Holland: Elsevier, 1995).
32.
go back to reference J.R. Carvajal, Recent developments of the program FULLPROF, in commission on powder diffraction (IUCr)Newsletter 26, 12 (2001). J.R. Carvajal, Recent developments of the program FULLPROF, in commission on powder diffraction (IUCr)Newsletter 26, 12 (2001).
33.
go back to reference J.P. Singh, S.O. Won, W.C. Lim, I.-J., Lee, and K.H. Chae, Electronic structure studies of chemically synthesized MgFe2O4 nanoparticlesJ. Mol. Struct. 1108, 444 (2016).CrossRef J.P. Singh, S.O. Won, W.C. Lim, I.-J., Lee, and K.H. Chae, Electronic structure studies of chemically synthesized MgFe2O4 nanoparticlesJ. Mol. Struct. 1108, 444 (2016).CrossRef
34.
go back to reference J.P. Singh, R.C. Srivastava, H.M. Agrawal, and R. Kumar, 100 MeV O7+ ion irradiation in nanosized zinc ferriteRadiat. Eff. Defects Solids 166, 564 (2011).CrossRef J.P. Singh, R.C. Srivastava, H.M. Agrawal, and R. Kumar, 100 MeV O7+ ion irradiation in nanosized zinc ferriteRadiat. Eff. Defects Solids 166, 564 (2011).CrossRef
35.
go back to reference K.S. Kim, S.H. Han, H.G. Kim, Y.T. Lee, K.A. Kim, J.S. Kim, and C.I.I. Cheon, Magnetic and structural properties of Mg(Fe2-xAlx)O4 thin filmsJ. Kor. Phys. Soc. 54, 886 (2009).CrossRef K.S. Kim, S.H. Han, H.G. Kim, Y.T. Lee, K.A. Kim, J.S. Kim, and C.I.I. Cheon, Magnetic and structural properties of Mg(Fe2-xAlx)O4 thin filmsJ. Kor. Phys. Soc. 54, 886 (2009).CrossRef
36.
go back to reference Y. Huang, Y. Tang, J. Wang, and Q. Chen, Synthesis of MgFe2O4 nanocrystallites under mild conditionsMat. Chem. Phys. 97, 394 (2006).CrossRef Y. Huang, Y. Tang, J. Wang, and Q. Chen, Synthesis of MgFe2O4 nanocrystallites under mild conditionsMat. Chem. Phys. 97, 394 (2006).CrossRef
37.
go back to reference S. Da Dalt, A.S. Takimi, T.M. Volkmer, V.C. Sousa, and C.P. Bergmann, Magnetic and Mössbauer behavior of the nanostructured MgFe2O4 spinel obtained at low temperaturePowder Technol. 210, 103 (2011).CrossRef S. Da Dalt, A.S. Takimi, T.M. Volkmer, V.C. Sousa, and C.P. Bergmann, Magnetic and Mössbauer behavior of the nanostructured MgFe2O4 spinel obtained at low temperaturePowder Technol. 210, 103 (2011).CrossRef
38.
39.
go back to reference J.P. Singh, G. Dixit, R.C. Srivastava, H.M. Agrawal, and K. Asokan, Looking for the possibility of multiferroism in NiGd0.04Fe1.96O4 nanoparticle systemJ. Phys. D Appl. Phys. 44, 435306 (2011).CrossRef J.P. Singh, G. Dixit, R.C. Srivastava, H.M. Agrawal, and K. Asokan, Looking for the possibility of multiferroism in NiGd0.04Fe1.96O4 nanoparticle systemJ. Phys. D Appl. Phys. 44, 435306 (2011).CrossRef
40.
go back to reference G. Tong, J. Guan, and Q. Zhang, Goethite hierarchical nanostructures: Glucose-assisted synthesis, chemical conversion into hematite with excellent photocatalytic propertiesMater. Chem. Phys. 127, 371 (2011).CrossRef G. Tong, J. Guan, and Q. Zhang, Goethite hierarchical nanostructures: Glucose-assisted synthesis, chemical conversion into hematite with excellent photocatalytic propertiesMater. Chem. Phys. 127, 371 (2011).CrossRef
41.
go back to reference P.N. Anantharamaih, B.P. Rao, H.M. Shashanka, J.A. Chelvane, V. Khopkar, and B. Sahoo, Role of Mg2+ and In3+ substitution on magnetic, magnetostrictive and dielectric properties of NiFe2O4 ceramics derived from nanopowdersPhys. Chem. Chem. Phys. 23, 1694 (2021).CrossRef P.N. Anantharamaih, B.P. Rao, H.M. Shashanka, J.A. Chelvane, V. Khopkar, and B. Sahoo, Role of Mg2+ and In3+ substitution on magnetic, magnetostrictive and dielectric properties of NiFe2O4 ceramics derived from nanopowdersPhys. Chem. Chem. Phys. 23, 1694 (2021).CrossRef
42.
go back to reference P.N. Anantharamaih, H.M. Shashanka, R. Kumar, J.A. Chelvane, and B. Sahoo, Chemically enabling CoFe2O4 for magnetostrictive strain sensing applications at lower magnetic fields: effect of Zn substitutionMater. Sci. Eng. B 266, 115080 (2021).CrossRef P.N. Anantharamaih, H.M. Shashanka, R. Kumar, J.A. Chelvane, and B. Sahoo, Chemically enabling CoFe2O4 for magnetostrictive strain sensing applications at lower magnetic fields: effect of Zn substitutionMater. Sci. Eng. B 266, 115080 (2021).CrossRef
43.
go back to reference F. Nakagomi, S.W. Da Silva, V.K. Garg, A.C. Oliveira, P.C. Morais, and A. Franco Jr., Influence of the Mg-content on the cation distribution in cubic MgxFe3-xO4 nanoparticlesJ. Solid State Chem. 182, 2423 (2009).CrossRef F. Nakagomi, S.W. Da Silva, V.K. Garg, A.C. Oliveira, P.C. Morais, and A. Franco Jr., Influence of the Mg-content on the cation distribution in cubic MgxFe3-xO4 nanoparticlesJ. Solid State Chem. 182, 2423 (2009).CrossRef
44.
go back to reference J. Kreisel, G. Lucazeau, and H. Vincent, Raman spectra and vibrational analysis of BaFe12O19 hexagonal ferriteJ. Solid State Chem. 137, 127 (1998).CrossRef J. Kreisel, G. Lucazeau, and H. Vincent, Raman spectra and vibrational analysis of BaFe12O19 hexagonal ferriteJ. Solid State Chem. 137, 127 (1998).CrossRef
45.
go back to reference A. Franco Jr., T.E.P. Alves, E.C.O. De Lima, E.S. da Nunes, and V. Zapf, Enhanced magnetization of nanoparticles of MgxFe(3–x)O4 (0.5 ≤ x ≤ 1.5) synthesized by combustion reactionAppl. Phys. A 94, 131 (2009).CrossRef A. Franco Jr., T.E.P. Alves, E.C.O. De Lima, E.S. da Nunes, and V. Zapf, Enhanced magnetization of nanoparticles of MgxFe(3–x)O4 (0.5 ≤ x ≤ 1.5) synthesized by combustion reactionAppl. Phys. A 94, 131 (2009).CrossRef
46.
go back to reference V.M. Khot, A.B. Salunkhe, M.R. Phadatare, and S.H. Pawar, Formation, microstructure and magnetic properties of nanocrystalline MgFe2O4Mater. Chem. Phys. 132, 782 (2012).CrossRef V.M. Khot, A.B. Salunkhe, M.R. Phadatare, and S.H. Pawar, Formation, microstructure and magnetic properties of nanocrystalline MgFe2O4Mater. Chem. Phys. 132, 782 (2012).CrossRef
47.
go back to reference R.A. McCurrie, Ferromagnetic Materials: Structure and Properties, 1st ed., (London: Academic Press, 1994). R.A. McCurrie, Ferromagnetic Materials: Structure and Properties, 1st ed., (London: Academic Press, 1994).
48.
go back to reference J. Azadmanjiri, S.A.S. Ebrahimi, and H.K. Salehani, Magnetic properties of nanosize NiFe2O4 particles synthesized by sol–gel auto combustion methodCeram. Inter. 33, 1623 (2007).CrossRef J. Azadmanjiri, S.A.S. Ebrahimi, and H.K. Salehani, Magnetic properties of nanosize NiFe2O4 particles synthesized by sol–gel auto combustion methodCeram. Inter. 33, 1623 (2007).CrossRef
49.
go back to reference Y. Qinghui, Z. Huaiwu, L. Yingli, W. Qiye, and J. Lijun, Microstructure and magnetic properties of microwave sintered NiCuZn ferrite for application in LTCC devicesMater. Lett. 79, 103 (2012).CrossRef Y. Qinghui, Z. Huaiwu, L. Yingli, W. Qiye, and J. Lijun, Microstructure and magnetic properties of microwave sintered NiCuZn ferrite for application in LTCC devicesMater. Lett. 79, 103 (2012).CrossRef
Metadata
Title
Investigation of the Influence of Annealing Temperature on the Structural and Magnetic Properties of MgFe2O4
Authors
Pradeep Prajapat
Saroj Dhaka
H. S. Mund
Publication date
28-05-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 8/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09022-3

Other articles of this Issue 8/2021

Journal of Electronic Materials 8/2021 Go to the issue