Skip to main content
Top
Published in: Photonic Network Communications 1/2019

12-03-2019 | Original Paper

Investigation of the performance of optical amplifiers for a 96 × 12 Gbps DWDM system using ultrasmall channel spacing

Authors: Ghanendra Kumar, Sandeep Kumar

Published in: Photonic Network Communications | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ultrasmall channel spacing is a key concern for dense optical communication when incorporating a greater number of transmitting channels. In this work, we consider varying channel spacing ranging from 100 to 900 GHz in order to improve the performance of a 96 × 12 dense optical communication system. Analysis is carried out to obtain results in terms of quality factor, gain, cross talk, and eye closure. Power amplification is provided with the aid of an EDFA, Raman optical amplifier, SOA-SOA, and SOA. The EDFA was found to deliver the best results, with a quality factor of 25.5–30 dB, gain of 25.6–29.4 dB, and eye closure of 0.4–0.9 dB. It can thus be concluded that EDFA is the best choice in all aspects of dense wavelength-division multiplexing optical communication under conditions of ultrasmall channel spacing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Essiambre, R.-J., Kramer, G., Winzer, P.J., Foschini, G.J., Goebel, B.: Capacity limits of optical fiber networks. J. Lightw. Technol. 28(4), 662–701 (2010)CrossRef Essiambre, R.-J., Kramer, G., Winzer, P.J., Foschini, G.J., Goebel, B.: Capacity limits of optical fiber networks. J. Lightw. Technol. 28(4), 662–701 (2010)CrossRef
2.
go back to reference Nasu, H., Takagi, T., Oike, M., Nomura, T., Kasukawa, A.: Ultrahigh wavelength stability through thermal compensation in wavelength monitor integrated laser modules. Photon. Technol. Lett. 15(3), 380–382 (2003)CrossRef Nasu, H., Takagi, T., Oike, M., Nomura, T., Kasukawa, A.: Ultrahigh wavelength stability through thermal compensation in wavelength monitor integrated laser modules. Photon. Technol. Lett. 15(3), 380–382 (2003)CrossRef
3.
go back to reference Fujiwara, M., et al.: Centralized frequency stabilization with wide capture range using MZI-AWG in DWDM-PON. Photon. Technol. Lett. 20(19), 1612–1614 (2008)CrossRef Fujiwara, M., et al.: Centralized frequency stabilization with wide capture range using MZI-AWG in DWDM-PON. Photon. Technol. Lett. 20(19), 1612–1614 (2008)CrossRef
4.
go back to reference Zhou, X., Chen, X., Long, K.: Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence. Photon. Technol. Lett. 24(1), 82–84 (2012)CrossRef Zhou, X., Chen, X., Long, K.: Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence. Photon. Technol. Lett. 24(1), 82–84 (2012)CrossRef
5.
go back to reference Pereira, J.S., Silva, H.J.A.: Generalized Chu polyphase sequences. In: Proceedings of the International Conference on Telecommunications, pp. 47–52 (2009) Pereira, J.S., Silva, H.J.A.: Generalized Chu polyphase sequences. In: Proceedings of the International Conference on Telecommunications, pp. 47–52 (2009)
6.
go back to reference Zhao, Y., et al.: Channel spacing monitor based on periodic training sequence in DWDM system. J. Lightwave Technol. 35(8), 1422–1428 (2017)CrossRef Zhao, Y., et al.: Channel spacing monitor based on periodic training sequence in DWDM system. J. Lightwave Technol. 35(8), 1422–1428 (2017)CrossRef
7.
go back to reference Rashed, A.N.Z., Metawe’e, M.A.: Maximization of repeater spacing in ultrawide-wavelength-division multiplexing optical communication systems based on multipumped laser diodes. J. Russ. Laser Res. 34, 255 (2013)CrossRef Rashed, A.N.Z., Metawe’e, M.A.: Maximization of repeater spacing in ultrawide-wavelength-division multiplexing optical communication systems based on multipumped laser diodes. J. Russ. Laser Res. 34, 255 (2013)CrossRef
8.
go back to reference Nielsen, M.L., Tsuruoka, K., Kato, T., et al.: SOA-booster integrated Mach–Zehnder modulator: investigation of SOA position. J. Lightwave Technol. 28, 837 (2010)CrossRef Nielsen, M.L., Tsuruoka, K., Kato, T., et al.: SOA-booster integrated Mach–Zehnder modulator: investigation of SOA position. J. Lightwave Technol. 28, 837 (2010)CrossRef
9.
go back to reference Singh, S., Kaler, R.S., Photon, I.E.E.E.: Novel optical flat-gain hybrid amplifier for dense wavelength division multiplexed system. Technol. Lett. 26, 173 (2014)CrossRef Singh, S., Kaler, R.S., Photon, I.E.E.E.: Novel optical flat-gain hybrid amplifier for dense wavelength division multiplexed system. Technol. Lett. 26, 173 (2014)CrossRef
10.
go back to reference Headley, C., Agrawal, G.P.: Raman Amplification in Fiber Optical Communication Systems. Elsevier/Academic Press, New York (2005) Headley, C., Agrawal, G.P.: Raman Amplification in Fiber Optical Communication Systems. Elsevier/Academic Press, New York (2005)
12.
go back to reference Hauske, F.N., et al.: Optical performance monitoring from FIR filter coefficients in coherent receivers. Presented at the Conference on Optical Fiber Communication (OFC/NFOEC), Collocated National Fiber Optic, San Diego, CA, USA, Mar. 2008, Paper OThW2 Hauske, F.N., et al.: Optical performance monitoring from FIR filter coefficients in coherent receivers. Presented at the Conference on Optical Fiber Communication (OFC/NFOEC), Collocated National Fiber Optic, San Diego, CA, USA, Mar. 2008, Paper OThW2
13.
go back to reference Christodoulopoulos, K., et al.: ORCHESTRA—Optical performance monitoring enabling flexible networking. Presented at the International Conference on Transport Opticals and Networks, Budapest, Hungary, July 2015, Paper We.C1.2 Christodoulopoulos, K., et al.: ORCHESTRA—Optical performance monitoring enabling flexible networking. Presented at the International Conference on Transport Opticals and Networks, Budapest, Hungary, July 2015, Paper We.C1.2
14.
go back to reference Zhao, Y., et al.: Frequency domain DSP based channel spacing monitor in denser Nyquist-WDM system. Presented at the European Conference on Optical Communication, Valencia, Spain, September 2015, Paper Th.1.5.5 Zhao, Y., et al.: Frequency domain DSP based channel spacing monitor in denser Nyquist-WDM system. Presented at the European Conference on Optical Communication, Valencia, Spain, September 2015, Paper Th.1.5.5
15.
go back to reference Zhao, Y., et al.: Accurate and robust channel spacing estimation based on periodic training sequence in denser Nyquist-WDM system. Presented at the European Conference on Optical Communication, Düsseldorf, Germany, September 2016, Paper M.1.B.2 Zhao, Y., et al.: Accurate and robust channel spacing estimation based on periodic training sequence in denser Nyquist-WDM system. Presented at the European Conference on Optical Communication, Düsseldorf, Germany, September 2016, Paper M.1.B.2
16.
go back to reference Li, L., Tao, Z., Oda, S., Hoshida, T., Rasmussen, J.C.: Wide-range accurate and simple digital frequency offset compensator for optical coherent receivers. Presented at the Optical Fiber Communication Conference/Collocated National Fiber Optical Engineering Conference, San Diego, CA, USA, Mar. 2008, Paper OWT4 Li, L., Tao, Z., Oda, S., Hoshida, T., Rasmussen, J.C.: Wide-range accurate and simple digital frequency offset compensator for optical coherent receivers. Presented at the Optical Fiber Communication Conference/Collocated National Fiber Optical Engineering Conference, San Diego, CA, USA, Mar. 2008, Paper OWT4
17.
go back to reference Yan, M., et al.: Experimental investigation of training sequence for adaptive equalizer initialization in DP-16QAM system. Presented at the European Conference on Optical Communication, London, U.K., Sep. 2013, Paper Tu.1.E.4 Yan, M., et al.: Experimental investigation of training sequence for adaptive equalizer initialization in DP-16QAM system. Presented at the European Conference on Optical Communication, London, U.K., Sep. 2013, Paper Tu.1.E.4
18.
go back to reference Kumar, C., Goyal, R.: L-band flat-gain Raman with erbium-doped fluoride hybrid optical amplifier for superdense wavelength division multiplexing system. J. Russ. Laser Res. 39(3), 263–266 (2018)CrossRef Kumar, C., Goyal, R.: L-band flat-gain Raman with erbium-doped fluoride hybrid optical amplifier for superdense wavelength division multiplexing system. J. Russ. Laser Res. 39(3), 263–266 (2018)CrossRef
19.
go back to reference Kumar, C., Goyal, R.: Performance analysis of hybrid optical amplifiers for super dense wavelength division multiplexing system in the scenario of reduced channel spacing. Mapan 33(2), 159–164 (2018)MathSciNetCrossRef Kumar, C., Goyal, R.: Performance analysis of hybrid optical amplifiers for super dense wavelength division multiplexing system in the scenario of reduced channel spacing. Mapan 33(2), 159–164 (2018)MathSciNetCrossRef
Metadata
Title
Investigation of the performance of optical amplifiers for a 96 × 12 Gbps DWDM system using ultrasmall channel spacing
Authors
Ghanendra Kumar
Sandeep Kumar
Publication date
12-03-2019
Publisher
Springer US
Published in
Photonic Network Communications / Issue 1/2019
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-018-00823-x

Other articles of this Issue 1/2019

Photonic Network Communications 1/2019 Go to the issue