Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2014

01-09-2014

Janus nanofiber: a new strategy to achieve simultaneous enhanced magnetic-photoluminescent bifunction

Authors: Xue Xi, Qianli Ma, Ming Yang, Xiangting Dong, Jinxian Wang, Wensheng Yu, Guixia Liu

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnetic-photoluminescent bifunctional Janus nanofibers have been successfully fabricated by electrospinning technology using a homemade parallel spinneret. NaYF4:Eu3+ and Fe3O4 nanoparticles (NPs) were respectively incorporated into polyvinyl pyrrolidone (PVP) and eleactrospun into Janus nanofibers with NaYF4:Eu3+/PVP as one strand nanofiber and Fe3O4/PVP as another strand nanofiber. The morphologies, structures, magnetic and photoluminescent properties of the as-prepared samples were investigated in detail by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometry, vibrating sample magnetometry and fluorescence spectroscopy. The results show Janus nanofibers simultaneously possess superior magnetic and luminescent properties due to their special structure, and the luminescent characteristics and saturation magnetizations of the Janus nanofibers can be tuned by adding various amounts of NaYF4:Eu3+ NPs and Fe3O4 NPs. Compared with Fe3O4/NaYF4:Eu3+/PVP composite nanofibers, the magnetic-photoluminescent bifunctional Janus nanofibers provide better performances due to isolating NaYF4:Eu3+ NPs from Fe3O4 NPs. The novel magnetic-photoluminescent bifunctional Janus nanofibers have potential applications in the fields of new nano-bio-label materials, drug target delivery materials and future nanodevices owing to their excellent magnetic and luminescent performance. More importantly, the design conception and construction technology are of universal significance to fabricate other bifunctional Janus nanofibers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Chen, H.R. Chen, S.J. Zhang, F. Chen, L.X. Zhang, J.M. Zhang, M. Zhu, H.X. Wu, L.M. Guo, J.W. Feng, J.L. Shi, Adv. Funct. Mater. 21, 270–278 (2011)CrossRef Y. Chen, H.R. Chen, S.J. Zhang, F. Chen, L.X. Zhang, J.M. Zhang, M. Zhu, H.X. Wu, L.M. Guo, J.W. Feng, J.L. Shi, Adv. Funct. Mater. 21, 270–278 (2011)CrossRef
2.
go back to reference K. Li, D. Ding, D. Huo, K.Y. Pu, N.N.P. Thao, Y. Hu, Z. Li, B. Liu, Adv. Funct. Mater. 22, 3107–3115 (2012)CrossRef K. Li, D. Ding, D. Huo, K.Y. Pu, N.N.P. Thao, Y. Hu, Z. Li, B. Liu, Adv. Funct. Mater. 22, 3107–3115 (2012)CrossRef
3.
go back to reference P. Sun, H.Y. Zhang, C. Liu, J. Fang, M. Wang, J. Chen, J.P. Zhang, C.B. Mao, S.K. Xu, Langmuir 26, 1278–1284 (2010)CrossRef P. Sun, H.Y. Zhang, C. Liu, J. Fang, M. Wang, J. Chen, J.P. Zhang, C.B. Mao, S.K. Xu, Langmuir 26, 1278–1284 (2010)CrossRef
4.
go back to reference P. Lu, J.L. Zhang, Y.L. Liu, D.H. Sun, G.X. Liu, G.Y. Hong, J.Z. Ni, Talanta 83, 450–457 (2010)CrossRef P. Lu, J.L. Zhang, Y.L. Liu, D.H. Sun, G.X. Liu, G.Y. Hong, J.Z. Ni, Talanta 83, 450–457 (2010)CrossRef
5.
go back to reference D. Nagao, M. Yokoyama, N. Yamauchi, H. Matsumoto, Y. Kobayashi, M. Konno, Langmuir 24, 9804–9808 (2008)CrossRef D. Nagao, M. Yokoyama, N. Yamauchi, H. Matsumoto, Y. Kobayashi, M. Konno, Langmuir 24, 9804–9808 (2008)CrossRef
7.
go back to reference J. Feng, S.Y. Song, R.P. Deng, W.Q. Fan, H.J. Zhang, Langmuir 26, 3596–3600 (2010)CrossRef J. Feng, S.Y. Song, R.P. Deng, W.Q. Fan, H.J. Zhang, Langmuir 26, 3596–3600 (2010)CrossRef
8.
go back to reference H.Y. Chen, D.C. Colvin, B. Qi, T. Moore, J. He, O.T. Mefford, F. Alexis, J.C. Gore, J.N. Anker, J. Mater. Chem. 22, 12802–12809 (2012) H.Y. Chen, D.C. Colvin, B. Qi, T. Moore, J. He, O.T. Mefford, F. Alexis, J.C. Gore, J.N. Anker, J. Mater. Chem. 22, 12802–12809 (2012)
9.
go back to reference D. Li, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Mater. Sci. 48, 5930–5937 (2013)CrossRef D. Li, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Mater. Sci. 48, 5930–5937 (2013)CrossRef
10.
go back to reference Q.L. Kong, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Mater. Sci. Mater. Electron. 24, 4745–4756 (2013) Q.L. Kong, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Mater. Sci. Mater. Electron. 24, 4745–4756 (2013)
11.
go back to reference Z.Y. Zhang, C.L. Shao, X.H. Li, Y.Y. Sun, M.Y. Zhang, J.B. Mu, P. Zhang, Z.C. Guo, Y.C. Liu, Nanoscale 5, 606–618 (2013)CrossRef Z.Y. Zhang, C.L. Shao, X.H. Li, Y.Y. Sun, M.Y. Zhang, J.B. Mu, P. Zhang, Z.C. Guo, Y.C. Liu, Nanoscale 5, 606–618 (2013)CrossRef
12.
14.
15.
go back to reference J.M. Corres, Y.R. Garcia, F.J. Arregui, I.R. Matias, IEEE Sens. J. 11, 2383–2387 (2011)CrossRef J.M. Corres, Y.R. Garcia, F.J. Arregui, I.R. Matias, IEEE Sens. J. 11, 2383–2387 (2011)CrossRef
16.
go back to reference N.A.M. Barakat, F.A. Sheikh, S.S. Al-Deyab, I.S. Chronakis, H.Y. Kim, Sci. Adv. Mater. 3, 730–734 (2011)CrossRef N.A.M. Barakat, F.A. Sheikh, S.S. Al-Deyab, I.S. Chronakis, H.Y. Kim, Sci. Adv. Mater. 3, 730–734 (2011)CrossRef
17.
go back to reference S.L. Chen, H.Q. Hou, F. Harnisch, S.A. Patil, A.A. Carmona-Martinez, S. Agarwal, Y.Y. Zhang, S. Sinha-Ray, A.L. Yarin, A. Greiner, U. Schröder, Energy Environ. Sci. 4, 1417–1421 (2011)CrossRef S.L. Chen, H.Q. Hou, F. Harnisch, S.A. Patil, A.A. Carmona-Martinez, S. Agarwal, Y.Y. Zhang, S. Sinha-Ray, A.L. Yarin, A. Greiner, U. Schröder, Energy Environ. Sci. 4, 1417–1421 (2011)CrossRef
18.
go back to reference J. Song, M.L. Chen, M.B. Olesen, C.X. Wang, R. Havelund, Q. Li, E.Q. Xie, R. Yang, P. Bøggild, C. Wang, F. Besenbacher, M.D. Dong, Nanoscale 3, 4966–4971 (2011)CrossRef J. Song, M.L. Chen, M.B. Olesen, C.X. Wang, R. Havelund, Q. Li, E.Q. Xie, R. Yang, P. Bøggild, C. Wang, F. Besenbacher, M.D. Dong, Nanoscale 3, 4966–4971 (2011)CrossRef
19.
go back to reference W. Wang, Z.Y. Li, X.R. Xu, B. Dong, H.N. Zhang, Z.J. Wang, C. Wang, R.H. Baughman, S.L. Fang, Small 7, 597–600 (2011)CrossRef W. Wang, Z.Y. Li, X.R. Xu, B. Dong, H.N. Zhang, Z.J. Wang, C. Wang, R.H. Baughman, S.L. Fang, Small 7, 597–600 (2011)CrossRef
20.
go back to reference Y.H. Wang, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. J. Chin. U. 8, 1657–1662 (2012) Y.H. Wang, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. J. Chin. U. 8, 1657–1662 (2012)
21.
go back to reference Y.H. Wang, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Acta Chim. Sin. 14, 1576–1582 (2012)CrossRef Y.H. Wang, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Acta Chim. Sin. 14, 1576–1582 (2012)CrossRef
22.
go back to reference Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, ChemPlusChem 79, 290–297 (2014)CrossRef Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, ChemPlusChem 79, 290–297 (2014)CrossRef
23.
go back to reference Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Nanoscale 6, 2945–2952 (2014)CrossRef Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Nanoscale 6, 2945–2952 (2014)CrossRef
24.
go back to reference H.G. Wang, Y.X. Li, L. Sun, Y.C. Li, W. Wang, S. Wang, S.F. Xu, Q.B. Yang, J. Colloid Interface Sci. 350, 396–401 (2010)CrossRef H.G. Wang, Y.X. Li, L. Sun, Y.C. Li, W. Wang, S. Wang, S.F. Xu, Q.B. Yang, J. Colloid Interface Sci. 350, 396–401 (2010)CrossRef
25.
go back to reference Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Nanopart. Res. 14, 1203–1209 (2012)CrossRef Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Nanopart. Res. 14, 1203–1209 (2012)CrossRef
26.
go back to reference Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Mater. Chem. 22, 14438–14442 (2012) Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Mater. Chem. 22, 14438–14442 (2012)
27.
go back to reference Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, Opt. Mater. 35, 526–530 (2013)CrossRef Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, Opt. Mater. 35, 526–530 (2013)CrossRef
28.
go back to reference G.Q. Gai, L.Y. Wang, X.T. Dong, C.M. Zheng, W.S. Yu, J.X. Wang, X.F. Xiao, J. Nanopart. Res. 15, 1539–1547 (2013)CrossRef G.Q. Gai, L.Y. Wang, X.T. Dong, C.M. Zheng, W.S. Yu, J.X. Wang, X.F. Xiao, J. Nanopart. Res. 15, 1539–1547 (2013)CrossRef
29.
go back to reference T. Nisisako, T. Torii, T. Takahashi, Y. Takizawa, Adv. Mater. 18, 1152–1156 (2006)CrossRef T. Nisisako, T. Torii, T. Takahashi, Y. Takizawa, Adv. Mater. 18, 1152–1156 (2006)CrossRef
30.
go back to reference K.H. Roh, D.C. Martin, J. Lahann, Nat. Mater. 4, 759–763 (2005) K.H. Roh, D.C. Martin, J. Lahann, Nat. Mater. 4, 759–763 (2005)
31.
go back to reference I. Salib, X. Yong, E.J. Crabb, N.M. Moellers, G.T. McFarlin IV, O. Kuksenok, A.C. Balazs, ACS Nano 7, 1224–1238 (2013)CrossRef I. Salib, X. Yong, E.J. Crabb, N.M. Moellers, G.T. McFarlin IV, O. Kuksenok, A.C. Balazs, ACS Nano 7, 1224–1238 (2013)CrossRef
32.
go back to reference Y.Y. Zheng, X.B. Wang, L. Shang, C.R. Li, C. Cui, W.J. Dong, W.H. Tang, B.Y. Chen, Mater. Charact. 61, 489–492 (2011)CrossRef Y.Y. Zheng, X.B. Wang, L. Shang, C.R. Li, C. Cui, W.J. Dong, W.H. Tang, B.Y. Chen, Mater. Charact. 61, 489–492 (2011)CrossRef
33.
go back to reference G.Q. Gai, L.Y. Wang, X.T. Dong, S.Z. Xu, J. Mater. Sci. 48, 5140–5147 (2013)CrossRef G.Q. Gai, L.Y. Wang, X.T. Dong, S.Z. Xu, J. Mater. Sci. 48, 5140–5147 (2013)CrossRef
34.
go back to reference Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. Eng. J. 222, 16–22 (2013)CrossRef Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. Eng. J. 222, 16–22 (2013)CrossRef
Metadata
Title
Janus nanofiber: a new strategy to achieve simultaneous enhanced magnetic-photoluminescent bifunction
Authors
Xue Xi
Qianli Ma
Ming Yang
Xiangting Dong
Jinxian Wang
Wensheng Yu
Guixia Liu
Publication date
01-09-2014
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2014
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-014-2124-7

Other articles of this Issue 9/2014

Journal of Materials Science: Materials in Electronics 9/2014 Go to the issue