Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2014

01-09-2014

Interfacial microstructure and hardness of nickel (Ni) nanoparticle-doped tin–silver–copper (Sn–Ag–Cu) solders on immersion silver (Ag)-plated copper (Cu) substrates

Authors: Tama Fouzder, Qingqian Li, Y. C. Chan, Daniel K. Chan

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sn–Ag–Cu composite solder has been prepared by adding Ni nanoparticles. Interfacial reactions, the morphology of the intermetallic compounds (IMC) that were formed, the hardness between the solder joints and the plain Cu/immersion Ag-plated Cu pads depending on the number of the reflow cycles and the aging time have all been investigated. A scallop-shaped Cu6Sn5 IMC layer that adhered to the substrate surface was formed at the interfaces of the plain Sn–Ag–Cu solder joints during the early reflow cycles. A very thin Cu3Sn IMC layer was found between the Cu6Sn5 IMC layer and the substrates after a lengthy reflow cycle and solid-state aging process. However, after adding Ni nanoparticles, a scallop-shaped (Cu, Ni)–Sn IMC layer was clearly observed at both of the substrate surfaces, without any Cu3Sn IMC layer formation. Needle-shaped Ag3Sn and sphere-shaped Cu6Sn5 IMC particles were clearly observed in the β-Sn matrix in the solder-ball region of the plain Sn–Ag–Cu solder joints. Additional fine (Cu, Ni)-Sn IMC particles were found to be homogeneously distributed in the β-Sn matrix of the solder joints containing the Ni nanoparticles. The Sn–Ag–Cu–0.5Ni composite solder joints consistently displayed higher hardness values than the plain Sn–Ag–Cu solder joints for any specific number of reflow cycles–on both substrates–due to their well-controlled, fine network-type microstructures and the homogeneous distribution of fine (Cu, Ni)–Sn IMC particles, which acted as second-phase strengthening mechanisms. The hardness values of Sn–Ag–Cu and Sn–Ag–Cu–0.5Ni on the Cu substrates after one reflow cycle were about 15.1 and 16.6 Hv, respectively–and about 12.2 and 14.4 Hv after sixteen reflow cycles, respectively. However, the hardness values of the plain Sn–Ag–Cu solder joint and solder joint containing 0.5 wt% Ni nanoparticles after one reflow cycle on the immersion Ag plated Cu substrates were about 17.7 and 18.7 Hv, respectively, and about 13.2 and 15.3 Hv after sixteen reflow cycles, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.A. Islam, B.Y. Wu, M.O. Alam, Y.C. Chan, W. Jillek, Investigations on microhardness of Sn-Zn based lead-free solder alloys as replacement of Sn-Pb solder. J. Alloys Comp. 392, 149–158 (2005)CrossRef R.A. Islam, B.Y. Wu, M.O. Alam, Y.C. Chan, W. Jillek, Investigations on microhardness of Sn-Zn based lead-free solder alloys as replacement of Sn-Pb solder. J. Alloys Comp. 392, 149–158 (2005)CrossRef
2.
go back to reference Y. Xia, X. Xie, Reliability of lead-free solder joints with different PCB surface finishes under thermal cycling. J. Alloys Comp. 454, 174–179 (2008)CrossRef Y. Xia, X. Xie, Reliability of lead-free solder joints with different PCB surface finishes under thermal cycling. J. Alloys Comp. 454, 174–179 (2008)CrossRef
3.
go back to reference M.N. Islam, Y.C. Chan, A. Sharif, M.J. Rizvi, Effect of 9 wt% In addition to Sn3.5Ag0.5Cu solder on the interfacial reaction with the Au/NiP metallization on Cu pads. J. Alloys Comp. 396, 217–223 (2005)CrossRef M.N. Islam, Y.C. Chan, A. Sharif, M.J. Rizvi, Effect of 9 wt% In addition to Sn3.5Ag0.5Cu solder on the interfacial reaction with the Au/NiP metallization on Cu pads. J. Alloys Comp. 396, 217–223 (2005)CrossRef
4.
go back to reference C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Properties of lead-free solder alloys with rare earth element additions. Mater. Sci. Eng., R 4(1), 1–44 (2004)CrossRef C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Properties of lead-free solder alloys with rare earth element additions. Mater. Sci. Eng., R 4(1), 1–44 (2004)CrossRef
5.
go back to reference F.X. Che, W.H. Zhu, E.S.W. Poh, X.W. Zhang, X.R. Zhang, The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures. J. Alloys Comp. 507, 215–224 (2010)CrossRef F.X. Che, W.H. Zhu, E.S.W. Poh, X.W. Zhang, X.R. Zhang, The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures. J. Alloys Comp. 507, 215–224 (2010)CrossRef
6.
go back to reference W.R. Osorio, L.C. Peixoto, L.R. Garcia, N.M. Noe, A. Garcia, Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys. J. Alloys Comp. 572, 97–106 (2013)CrossRef W.R. Osorio, L.C. Peixoto, L.R. Garcia, N.M. Noe, A. Garcia, Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys. J. Alloys Comp. 572, 97–106 (2013)CrossRef
7.
go back to reference A.A. El-Daly, Y. Swilem, M.H. Makled, M.G. El-Shaarawy, A.M. Abdraboh, Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys. J. Alloys Comp. 484, 134–142 (2009)CrossRef A.A. El-Daly, Y. Swilem, M.H. Makled, M.G. El-Shaarawy, A.M. Abdraboh, Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys. J. Alloys Comp. 484, 134–142 (2009)CrossRef
8.
go back to reference W.M. Xiao, Y.W. Shi, G.C. Xu, R. Ren, F. Guo, Z.D. Xia, Y.P. Lei, Effect of rare earth on mechanical creep-fatigue property of SnAgCu solder joint. J. Alloys Comp. 472, 98–202 (2009)CrossRef W.M. Xiao, Y.W. Shi, G.C. Xu, R. Ren, F. Guo, Z.D. Xia, Y.P. Lei, Effect of rare earth on mechanical creep-fatigue property of SnAgCu solder joint. J. Alloys Comp. 472, 98–202 (2009)CrossRef
9.
go back to reference J.X. Wang, S.B. Xue, Z.J. Han, S.L. Yu, Y. Chen, Y.P. Shi, H. Wang, Effects of rare earth Ce on microstructures, solderability of Sn–Ag–Cu and Sn-Cu-Ni solders as well as mechanical properties of soldered joints. J. Alloys Comp. 467, 219–226 (2009)CrossRef J.X. Wang, S.B. Xue, Z.J. Han, S.L. Yu, Y. Chen, Y.P. Shi, H. Wang, Effects of rare earth Ce on microstructures, solderability of Sn–Ag–Cu and Sn-Cu-Ni solders as well as mechanical properties of soldered joints. J. Alloys Comp. 467, 219–226 (2009)CrossRef
10.
go back to reference L.W. Lin, J.M. Song, Y.S. Lai, Y.T. Chiu, N.C. Lee, J.Y. Uan, Alloying modification of Sn–Ag–Cu solders by manganese and titanium. Microelectronics Reliab. 49, 235–241 (2009)CrossRef L.W. Lin, J.M. Song, Y.S. Lai, Y.T. Chiu, N.C. Lee, J.Y. Uan, Alloying modification of Sn–Ag–Cu solders by manganese and titanium. Microelectronics Reliab. 49, 235–241 (2009)CrossRef
11.
go back to reference P. Babaghorbani, S.M.L. Nai, M. Gupta, Reinforcements at nanometer length scale and the electrical resistivity of lead-free solders. J. Alloys Comp. 478, 458–461 (2009)CrossRef P. Babaghorbani, S.M.L. Nai, M. Gupta, Reinforcements at nanometer length scale and the electrical resistivity of lead-free solders. J. Alloys Comp. 478, 458–461 (2009)CrossRef
12.
go back to reference E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, H. Balkan, Current-crowding-induced electromigration failure in flip chip solder joints. Appl. Phys. Lett. 80(4), 580–582 (2002)CrossRef E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, H. Balkan, Current-crowding-induced electromigration failure in flip chip solder joints. Appl. Phys. Lett. 80(4), 580–582 (2002)CrossRef
13.
go back to reference L. Qi, J. Huang, X. Zhao, H. Zhang, Effect of thermal-shearing cycling on Ag3Sn microstructural coarsening in SnAgCu solder. J. Alloys Comp. 469, 102–107 (2009)CrossRef L. Qi, J. Huang, X. Zhao, H. Zhang, Effect of thermal-shearing cycling on Ag3Sn microstructural coarsening in SnAgCu solder. J. Alloys Comp. 469, 102–107 (2009)CrossRef
14.
go back to reference F. Cheng, F. Gao, H. Nishikawa, T. Takemoto, Interaction behavior between the additives and Sn in Sn-3.0Ag-0.5Cu-based alloys and the relevant joint solderability. J. Alloys Comp. 472, 530–534 (2009)CrossRef F. Cheng, F. Gao, H. Nishikawa, T. Takemoto, Interaction behavior between the additives and Sn in Sn-3.0Ag-0.5Cu-based alloys and the relevant joint solderability. J. Alloys Comp. 472, 530–534 (2009)CrossRef
15.
go back to reference J. Chen, J. Shen, S. Lai, D. Min, X. Wang, Microstructural evolution of intermetallic compounds in Sn-3.5Ag-X (X = 0,0.75Ni, 1.0Zn and 1.5In)/Cu solder joints during liquid aging. J. Alloys Comp. 489, 631–637 (2010)CrossRef J. Chen, J. Shen, S. Lai, D. Min, X. Wang, Microstructural evolution of intermetallic compounds in Sn-3.5Ag-X (X = 0,0.75Ni, 1.0Zn and 1.5In)/Cu solder joints during liquid aging. J. Alloys Comp. 489, 631–637 (2010)CrossRef
16.
go back to reference Y. Shi, J. Tian, H. Hao, Z. Xia, Y. Lei, F. Guo, Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder. J. Alloys Comp. 453, 180–184 (2008)CrossRef Y. Shi, J. Tian, H. Hao, Z. Xia, Y. Lei, F. Guo, Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder. J. Alloys Comp. 453, 180–184 (2008)CrossRef
17.
go back to reference L.C. Tsao, S.Y. Chan, Effects of nano-TiO2 additions on thermal analysis, microstructure and tensile properties of Sn3.5Ag-0.25Cu solder. Mater. Des. 31, 990–993 (2010)CrossRef L.C. Tsao, S.Y. Chan, Effects of nano-TiO2 additions on thermal analysis, microstructure and tensile properties of Sn3.5Ag-0.25Cu solder. Mater. Des. 31, 990–993 (2010)CrossRef
18.
go back to reference S.M.L. Nai, J. Wai, M. Gupta, Influence of ceramic reinforcements on the wettability and mechanical properties of novel lead-free solder composites. Thin Solid Films 504, 401–404 (2006)CrossRef S.M.L. Nai, J. Wai, M. Gupta, Influence of ceramic reinforcements on the wettability and mechanical properties of novel lead-free solder composites. Thin Solid Films 504, 401–404 (2006)CrossRef
19.
go back to reference T.H. Chuang, H.F. Wu, Effect of Ce addition on the microstructures and mechanical properties of Sn-58Bi solder joints. J. Electron. Mater. 40, 71–77 (2011)CrossRef T.H. Chuang, H.F. Wu, Effect of Ce addition on the microstructures and mechanical properties of Sn-58Bi solder joints. J. Electron. Mater. 40, 71–77 (2011)CrossRef
20.
go back to reference F. Tai, F. Guo, M.T. Han, Z.D. Xia, Y.P. Lei, Y.W. Shi, Creep and thermomechanical fatigue properties of in situ Cu6Sn5 reinforced lead-free composite solder. Mater. Sci. Eng., A 527, 3335–3342 (2010)CrossRef F. Tai, F. Guo, M.T. Han, Z.D. Xia, Y.P. Lei, Y.W. Shi, Creep and thermomechanical fatigue properties of in situ Cu6Sn5 reinforced lead-free composite solder. Mater. Sci. Eng., A 527, 3335–3342 (2010)CrossRef
21.
go back to reference F. Gao, J. Lee, S. Choi, J.P. Lucas, T.R. Bieler, K.N. Subramanian, Processing and aging characteristics of eutectic Sn-3.5Ag solder reinforced with mechanically incorporated Ni particles. J. Electron. Mater. 30(9), 1073–1082 (2001)CrossRef F. Gao, J. Lee, S. Choi, J.P. Lucas, T.R. Bieler, K.N. Subramanian, Processing and aging characteristics of eutectic Sn-3.5Ag solder reinforced with mechanically incorporated Ni particles. J. Electron. Mater. 30(9), 1073–1082 (2001)CrossRef
22.
go back to reference F. Gao, J.P. Lucas, K.N. Subramanian, Creep behavior in Cu and Ag particle-reinforced composite and eutectic Sn-3.5Ag and Sn-4.0Ag-0.5Cu non composite solder joints. J. Mater. Sci.: Mater. Electron. 12(1), 27–35 (2001) F. Gao, J.P. Lucas, K.N. Subramanian, Creep behavior in Cu and Ag particle-reinforced composite and eutectic Sn-3.5Ag and Sn-4.0Ag-0.5Cu non composite solder joints. J. Mater. Sci.: Mater. Electron. 12(1), 27–35 (2001)
23.
go back to reference T. Fouzder, Q. Li, Y.C. Chan, D.K. Chan, Microstructure and kinetic analysis of the properties and behaviour of nickel (Ni) nano-particle doped tin–zinc–bismuth (Sn–8Zn–3Bi) solders on immersion silver (Ag)-plated copper (Cu) substrates. J. Mater. Sci.: Mater. Electron. 25, 2529–2539 (2014) T. Fouzder, Q. Li, Y.C. Chan, D.K. Chan, Microstructure and kinetic analysis of the properties and behaviour of nickel (Ni) nano-particle doped tin–zinc–bismuth (Sn–8Zn–3Bi) solders on immersion silver (Ag)-plated copper (Cu) substrates. J. Mater. Sci.: Mater. Electron. 25, 2529–2539 (2014)
24.
go back to reference J.W. Yoon, S.W. Kim, S.B. Jung, IMC morphology interfacial reaction and joint reliability of Pb-free Sn–Ag–Cu solder on electrolytic Ni BGA substrate. J. Alloys Comp. 392, 247–253 (2005)CrossRef J.W. Yoon, S.W. Kim, S.B. Jung, IMC morphology interfacial reaction and joint reliability of Pb-free Sn–Ag–Cu solder on electrolytic Ni BGA substrate. J. Alloys Comp. 392, 247–253 (2005)CrossRef
25.
go back to reference S.L. Tay, A.S.M.A. Haseeb, M.R. Johan, P.R. Munroe, M.Z. Quadir, Influence of Ni nanoparticle on the morphology and growth of interfacial intermetallic compounds between Sn-3.8Ag-0.7Cu lead-free solder and copper substrate. Intermetallics 33, 8–15 (2013)CrossRef S.L. Tay, A.S.M.A. Haseeb, M.R. Johan, P.R. Munroe, M.Z. Quadir, Influence of Ni nanoparticle on the morphology and growth of interfacial intermetallic compounds between Sn-3.8Ag-0.7Cu lead-free solder and copper substrate. Intermetallics 33, 8–15 (2013)CrossRef
26.
go back to reference J.J. Sundelin, S.T. Nurmib, T.K. Lepisto, E.O. Ristolainen, Mechanical and microstructural properties of SnAgCu solder joints. Mater. Sci. Eng., A 420, 55–62 (2006)CrossRef J.J. Sundelin, S.T. Nurmib, T.K. Lepisto, E.O. Ristolainen, Mechanical and microstructural properties of SnAgCu solder joints. Mater. Sci. Eng., A 420, 55–62 (2006)CrossRef
27.
go back to reference J.W. Yoon, B.I. Noh, B.K. Kim, C.C. Shur, S.B. Jung, Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints. J. Alloys Comp. 486, 142–147 (2009)CrossRef J.W. Yoon, B.I. Noh, B.K. Kim, C.C. Shur, S.B. Jung, Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints. J. Alloys Comp. 486, 142–147 (2009)CrossRef
28.
go back to reference B. Li, Y. Shi, Y. Lei, F. Guo, Z. Xia, B. Zong, Effect of rare earth element addition on the microstructure of Sn–Ag–Cu solder joint. J. Electron. Mater. 34(3), 217–224 (2005)CrossRef B. Li, Y. Shi, Y. Lei, F. Guo, Z. Xia, B. Zong, Effect of rare earth element addition on the microstructure of Sn–Ag–Cu solder joint. J. Electron. Mater. 34(3), 217–224 (2005)CrossRef
Metadata
Title
Interfacial microstructure and hardness of nickel (Ni) nanoparticle-doped tin–silver–copper (Sn–Ag–Cu) solders on immersion silver (Ag)-plated copper (Cu) substrates
Authors
Tama Fouzder
Qingqian Li
Y. C. Chan
Daniel K. Chan
Publication date
01-09-2014
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2014
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-014-2123-8

Other articles of this Issue 9/2014

Journal of Materials Science: Materials in Electronics 9/2014 Go to the issue