Skip to main content
Top

2013 | OriginalPaper | Chapter

7. Kalman Filtering and State-Feedback Control of a Nonlinear Piezoelectric Cantilevered Actuator

Authors : Micky Rakotondrabe, Juan-Antonio Escareno, Didace Habineza, Sergio Lescano

Published in: Smart Materials-Based Actuators at the Micro/Nano-Scale

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter deals with the state estimation with noise rejection in a piezoelectric cantilevered actuator and its state-feedback control. The noises which come from the sensor used, strain gage, are important and should be filtered. For that, we employ the classical Kalman filtering for their rejection and for the state estimation and we apply afterwards a state-feedback control with integral action to improve the general performances of the actuator. However, as the actuator exhibits hysteresis nonlinearity, we propose first its linearization thanks to a feedforward control before application of the above filtering and feedback control. The experimental results confirm the efficiency of the approach and demonstrate the interest of the method for precise positioning such as in micropositioning applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Identification Matlab Toolbox.
 
Literature
1.
go back to reference M. Rakotondrabe, C. Clévy, P. Lutz, Modelling and robust position/force control of a piezoelectric microgripper, in IEEE—International Conference on Automation Science and Engineering (CASE), Scottsdale, AZ, USA, 2007, pp. 39–44 M. Rakotondrabe, C. Clévy, P. Lutz, Modelling and robust position/force control of a piezoelectric microgripper, in IEEE—International Conference on Automation Science and Engineering (CASE), Scottsdale, AZ, USA, 2007, pp. 39–44
2.
go back to reference M. Rakotondrabe, Y. Haddab, P. Lutz, Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever. IEEE Trans. Contr. Syst. Technol. (T-CST) 17(3), 528–539 (2009) M. Rakotondrabe, Y. Haddab, P. Lutz, Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever. IEEE Trans. Contr. Syst. Technol. (T-CST) 17(3), 528–539 (2009)
3.
go back to reference M. Rakotondrabe, K. Rabenorosoa, J. Agnus, N. Chaillet, Robust feedforward-feedback control of a nonlinear and oscillating 2-dof piezocantilever. IEEE Trans. Autom. Sci. Eng. (T-ASE) 8(3), 506–519 (2011) M. Rakotondrabe, K. Rabenorosoa, J. Agnus, N. Chaillet, Robust feedforward-feedback control of a nonlinear and oscillating 2-dof piezocantilever. IEEE Trans. Autom. Sci. Eng. (T-ASE) 8(3), 506–519 (2011)
4.
go back to reference S. Khadraoui, M. Rakotondrabe, P. Lutz, Interval modeling and robust control of piezoelectric microactuators. IEEE Trans. Contr. Syst. Technol. (T-CST) 20(2), 486–494 (2012) S. Khadraoui, M. Rakotondrabe, P. Lutz, Interval modeling and robust control of piezoelectric microactuators. IEEE Trans. Contr. Syst. Technol. (T-CST) 20(2), 486–494 (2012)
5.
6.
go back to reference A. Sebastian, A. Gannepalli, M.V. Salapaka, A review of the systems approach to the analysis of dynamic-mode atomic force microscopy. IEEE Trans. Contr. Syst. Technol. 15(5), 952–959 (2007)CrossRef A. Sebastian, A. Gannepalli, M.V. Salapaka, A review of the systems approach to the analysis of dynamic-mode atomic force microscopy. IEEE Trans. Contr. Syst. Technol. 15(5), 952–959 (2007)CrossRef
7.
go back to reference Q. Xu, Y. Li, Model predictive discrete-time sliding mode control of a nanopositioning piezostage without modeling hysteresis. IEEE Trans. Contr. Syst. Technol. 20(4), 983–994 (2012)CrossRef Q. Xu, Y. Li, Model predictive discrete-time sliding mode control of a nanopositioning piezostage without modeling hysteresis. IEEE Trans. Contr. Syst. Technol. 20(4), 983–994 (2012)CrossRef
8.
go back to reference A. Bazaei, Y.K. Yong, S.O.R. Moheimani, A. Sebastian, Tracking of triangular references using signal transformation for control of a novel AFM scanner stage. IEEE Trans. Contr. Syst. Technol. 20(2), 453–464 (2012)CrossRef A. Bazaei, Y.K. Yong, S.O.R. Moheimani, A. Sebastian, Tracking of triangular references using signal transformation for control of a novel AFM scanner stage. IEEE Trans. Contr. Syst. Technol. 20(2), 453–464 (2012)CrossRef
9.
go back to reference S. Devasia, E.E. Eleftheriou, R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Contr. Syst. Technol. 15(5), 802–823 (2007)CrossRef S. Devasia, E.E. Eleftheriou, R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Contr. Syst. Technol. 15(5), 802–823 (2007)CrossRef
10.
go back to reference M. Rakotondrabe, Piezoelectric Cantilevered Structures: Modeling, Control and Measurement/Estimation Aspects (Springer, Berlin, 2013) M. Rakotondrabe, Piezoelectric Cantilevered Structures: Modeling, Control and Measurement/Estimation Aspects (Springer, Berlin, 2013)
11.
go back to reference D. Croft, G. Shed, S. Devasia, Creep, hysteresis and vibration compensation for piezoactuators: atomic force microscopy application. ASME J. Dyn. Syst. Meas. Contr. 123(1), 35–43 (2001)CrossRef D. Croft, G. Shed, S. Devasia, Creep, hysteresis and vibration compensation for piezoactuators: atomic force microscopy application. ASME J. Dyn. Syst. Meas. Contr. 123(1), 35–43 (2001)CrossRef
12.
go back to reference A. Dubra, J. Massa, C.l. Paterson, Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors. Opt. Express 13(22), 9062–9070 (2005) A. Dubra, J. Massa, C.l. Paterson, Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors. Opt. Express 13(22), 9062–9070 (2005)
13.
go back to reference M. Rakotondrabe, C. Clévy, P. Lutz, Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilever. IEEE Trans. Autom. Sci. Eng. (TASE) 7(3), 440–450 (2010) M. Rakotondrabe, C. Clévy, P. Lutz, Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilever. IEEE Trans. Autom. Sci. Eng. (TASE) 7(3), 440–450 (2010)
14.
go back to reference W.T. Ang, P.K. Kholsa, C.N. Riviere, Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)CrossRef W.T. Ang, P.K. Kholsa, C.N. Riviere, Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)CrossRef
15.
go back to reference B. Mokaberi, A.A.G. Requicha, Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. ASE 5(2), 197–208 (2008) B. Mokaberi, A.A.G. Requicha, Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. ASE 5(2), 197–208 (2008)
16.
go back to reference M. Al Janaideh, P. Krejci, Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Trans. Mechatron. (2012). doi:10.1109/TMECH.2012.2205265 M. Al Janaideh, P. Krejci, Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Trans. Mechatron. (2012). doi:10.1109/TMECH.2012.2205265
17.
go back to reference M. Rakotondrabe, Classical Prandtl–Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators, in ACC (American Control Conference), Montréal, Canada, June 2012, pp. 1646–1651 M. Rakotondrabe, Classical Prandtl–Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators, in ACC (American Control Conference), Montréal, Canada, June 2012, pp. 1646–1651
18.
go back to reference M. Rakotondrabe, Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans. ASE 8(2), 428–431 (2011) M. Rakotondrabe, Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans. ASE 8(2), 428–431 (2011)
19.
go back to reference J.J. Dosch, D.J. Inman, E. Garcia, A self-sensing piezoelectric actuator for collocated control. J. Intell. Mater. Syst. Struct. 3(1), 166–185 (1992)CrossRef J.J. Dosch, D.J. Inman, E. Garcia, A self-sensing piezoelectric actuator for collocated control. J. Intell. Mater. Syst. Struct. 3(1), 166–185 (1992)CrossRef
20.
go back to reference W.W. Law, W.-H. Liao, J. Huang, Vibration control of structures with self-sensing piezoelectric actuators incorporating adaptive mechanisms. Smart Mater. Struct. 12, 720–730 (2003)CrossRef W.W. Law, W.-H. Liao, J. Huang, Vibration control of structures with self-sensing piezoelectric actuators incorporating adaptive mechanisms. Smart Mater. Struct. 12, 720–730 (2003)CrossRef
21.
go back to reference C.K. Pang, G. Guo, B.M. Chen, T.H. Lee, Self-sensing actuation for nanopositioning and active-mode damping in dual-stage HDDs. IEEE/ASME Trans. Mechatron. (T-mech) 11(3), 328–338 (2006) C.K. Pang, G. Guo, B.M. Chen, T.H. Lee, Self-sensing actuation for nanopositioning and active-mode damping in dual-stage HDDs. IEEE/ASME Trans. Mechatron. (T-mech) 11(3), 328–338 (2006)
22.
go back to reference S.O.R. Moheimani, Y.K. Yong, Simultaneous sensing and actuation with a piezoelectric tube scanner. Rev. Sci. Instrum. 79, 073702 (2008)CrossRef S.O.R. Moheimani, Y.K. Yong, Simultaneous sensing and actuation with a piezoelectric tube scanner. Rev. Sci. Instrum. 79, 073702 (2008)CrossRef
23.
go back to reference S.O.R. Moheimani, Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. Rev. Sci. Instrum. 79, 071101 (2008)CrossRef S.O.R. Moheimani, Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. Rev. Sci. Instrum. 79, 071101 (2008)CrossRef
24.
go back to reference A. Ivan, M. Rakotondrabe, P. Lutz, N. Chaillet, Quasi-static displacement self-sensing method for cantilevered piezoelectric actuators. Rev. Sci. Instrum. (RSI) 80(6), 065102 (2009) A. Ivan, M. Rakotondrabe, P. Lutz, N. Chaillet, Quasi-static displacement self-sensing method for cantilevered piezoelectric actuators. Rev. Sci. Instrum. (RSI) 80(6), 065102 (2009)
25.
go back to reference A. Ivan, M. Rakotondrabe, P. Lutz, N. Chaillet, Current integration force and displacement self-sensing method for cantilevered piezoelectric actuators. Rev. Sci. Instrum. (RSI) 80(12), 2126103 (2009) A. Ivan, M. Rakotondrabe, P. Lutz, N. Chaillet, Current integration force and displacement self-sensing method for cantilevered piezoelectric actuators. Rev. Sci. Instrum. (RSI) 80(12), 2126103 (2009)
26.
go back to reference M. Rakotondrabe, I.A. Ivan, S. Khadraoui, C. Clevy, P. Lutz, N. Chaillet, Dynamic displacement self-sensing and robust control of canxtilevered piezoelectric actuators dedicated to microassembly tasks, in IEEE/ASME—AIM (International Conference on Intelligent Materials), Montréal, Canada, July 2010, pp. 557–562 M. Rakotondrabe, I.A. Ivan, S. Khadraoui, C. Clevy, P. Lutz, N. Chaillet, Dynamic displacement self-sensing and robust control of canxtilevered piezoelectric actuators dedicated to microassembly tasks, in IEEE/ASME—AIM (International Conference on Intelligent Materials), Montréal, Canada, July 2010, pp. 557–562
27.
go back to reference M.A. Krasnosel’skii, A.V. Pokrovskii, Systems with Hysteresis (Springer, Berlin, 1989) M.A. Krasnosel’skii, A.V. Pokrovskii, Systems with Hysteresis (Springer, Berlin, 1989)
28.
go back to reference K. Kuhnen, H. Janocha, Complex hysteresis model of a broad class of hysteretic nonlinearities, in Proceedings of 8th International Conference on New Actuators, Bremen, pp. 688–691 (2002) K. Kuhnen, H. Janocha, Complex hysteresis model of a broad class of hysteretic nonlinearities, in Proceedings of 8th International Conference on New Actuators, Bremen, pp. 688–691 (2002)
29.
go back to reference R.G. Brown, P.Y.C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, 3rd edn. (Wiley, New York, 1997)MATH R.G. Brown, P.Y.C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, 3rd edn. (Wiley, New York, 1997)MATH
Metadata
Title
Kalman Filtering and State-Feedback Control of a Nonlinear Piezoelectric Cantilevered Actuator
Authors
Micky Rakotondrabe
Juan-Antonio Escareno
Didace Habineza
Sergio Lescano
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6684-0_7