Skip to main content
Top

2015 | OriginalPaper | Chapter

4. Kelvin Probe Force Microscopy in Nanoscience and Nanotechnology

Authors : Da Luo, Hao Sun, Yan Li

Published in: Surface Science Tools for Nanomaterials Characterization

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Kelvin probe force microscopy (KPFM) is applicable to measure surface potential and work function in a localized nanoscale surface area. In this chapter, we describe the theory and measurement of KPFM and its applications in the characterization of inorganic nanostructure and nanomaterials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kelvin L (1898) V. contact electricity of metals. London, Edinburgh, Dublin Philos Mag J Sci 46(278):82–120CrossRef Kelvin L (1898) V. contact electricity of metals. London, Edinburgh, Dublin Philos Mag J Sci 46(278):82–120CrossRef
2.
go back to reference Zisman W (1932) A new method of measuring contact potential differences in metals. Rev Sci Instrum 3(7):367–370CrossRef Zisman W (1932) A new method of measuring contact potential differences in metals. Rev Sci Instrum 3(7):367–370CrossRef
3.
go back to reference Melitz W, Shen J, Kummel AC, Lee S (2011) Kelvin probe force microscopy and its application. Surf Sci Rep 66(1):1–27CrossRef Melitz W, Shen J, Kummel AC, Lee S (2011) Kelvin probe force microscopy and its application. Surf Sci Rep 66(1):1–27CrossRef
4.
go back to reference Sadewasser S, Glatzel T (2012) Kelvin probe force microscopy. Springer, HeidelbergCrossRef Sadewasser S, Glatzel T (2012) Kelvin probe force microscopy. Springer, HeidelbergCrossRef
5.
go back to reference Nonnenmacher M, O’Boyle M, Wickramasinghe H (1991) Kelvin probe force microscopy. Appl Phys Lett 58:2921CrossRef Nonnenmacher M, O’Boyle M, Wickramasinghe H (1991) Kelvin probe force microscopy. Appl Phys Lett 58:2921CrossRef
6.
go back to reference O’Boyle M, Hwang T, Wickramasinghe H (1999) Atomic force microscopy of work functions on the nanometer scale. Appl Phys Lett 74(18):2641–2642CrossRef O’Boyle M, Hwang T, Wickramasinghe H (1999) Atomic force microscopy of work functions on the nanometer scale. Appl Phys Lett 74(18):2641–2642CrossRef
7.
go back to reference Yamauchi T, Tabuchi M, Nakamura A (2004) Size dependence of the work function in Inas quantum dots on Gaas (001) as studied by Kelvin force probe microscopy. Appl Phys Lett 84(19):3834–3836CrossRef Yamauchi T, Tabuchi M, Nakamura A (2004) Size dependence of the work function in Inas quantum dots on Gaas (001) as studied by Kelvin force probe microscopy. Appl Phys Lett 84(19):3834–3836CrossRef
8.
go back to reference Ziegler D, Gava P, Güttinger J, Molitor F, Wirtz L, Lazzeri M, Saitta A, Stemmer A, Mauri F, Stampfer C (2011) Variations in the work function of doped single-and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory. Phys Rev B 83(23):235434CrossRef Ziegler D, Gava P, Güttinger J, Molitor F, Wirtz L, Lazzeri M, Saitta A, Stemmer A, Mauri F, Stampfer C (2011) Variations in the work function of doped single-and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory. Phys Rev B 83(23):235434CrossRef
9.
go back to reference Sun H, Chu H, Wang J, Ding L, Li Y (2010) Kelvin probe force microscopy study on nanotriboelectrification. Appl Phys Lett 96(8):083112–083112-3CrossRef Sun H, Chu H, Wang J, Ding L, Li Y (2010) Kelvin probe force microscopy study on nanotriboelectrification. Appl Phys Lett 96(8):083112–083112-3CrossRef
10.
go back to reference Liu L, Li G (2010) Electrical characterization of single-walled carbon nanotubes in organic solar cells by Kelvin probe force microscopy. Appl Phys Lett 96:083302CrossRef Liu L, Li G (2010) Electrical characterization of single-walled carbon nanotubes in organic solar cells by Kelvin probe force microscopy. Appl Phys Lett 96:083302CrossRef
11.
go back to reference Yu Y-J, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P (2009) Tuning the graphene work function by electric field effect. Nano Lett 9(10):3430–3434CrossRef Yu Y-J, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P (2009) Tuning the graphene work function by electric field effect. Nano Lett 9(10):3430–3434CrossRef
12.
go back to reference Colchero J, Gil A, Baró A (2001) Resolution enhancement and improved data interpretation in electrostatic force microscopy. Phys Rev B 64(24):245403CrossRef Colchero J, Gil A, Baró A (2001) Resolution enhancement and improved data interpretation in electrostatic force microscopy. Phys Rev B 64(24):245403CrossRef
13.
go back to reference Zerweck U, Loppacher C, Otto T, Grafström S, Eng LM (2005) Accuracy and resolution limits of Kelvin probe force microscopy. Phys Rev B 71(12):125424CrossRef Zerweck U, Loppacher C, Otto T, Grafström S, Eng LM (2005) Accuracy and resolution limits of Kelvin probe force microscopy. Phys Rev B 71(12):125424CrossRef
14.
go back to reference Jacobs H, Leuchtmann P, Homan O, Stemmer A (1998) Resolution and contrast in Kelvin probe force microscopy. J Appl Phys 84(3):1168–1173CrossRef Jacobs H, Leuchtmann P, Homan O, Stemmer A (1998) Resolution and contrast in Kelvin probe force microscopy. J Appl Phys 84(3):1168–1173CrossRef
15.
go back to reference Ding L, Li Y, Chu H, Li C, Yang Z, Zhou W, Tang ZK (2007) High speed atomic force microscope lithography driven by electrostatic interaction. Appl Phys Lett 91(2):023121–023121-3CrossRef Ding L, Li Y, Chu H, Li C, Yang Z, Zhou W, Tang ZK (2007) High speed atomic force microscope lithography driven by electrostatic interaction. Appl Phys Lett 91(2):023121–023121-3CrossRef
16.
go back to reference Mesquida P, Stemmer A (2001) Attaching silica nanoparticles from suspension onto surface charge patterns generated by a conductive atomic force microscope tip. Adv Mater 13(18):1395–1398CrossRef Mesquida P, Stemmer A (2001) Attaching silica nanoparticles from suspension onto surface charge patterns generated by a conductive atomic force microscope tip. Adv Mater 13(18):1395–1398CrossRef
17.
go back to reference Lee G, Shin Y-H, Son JY (2009) Formation of self-assembled polyelectrolyte multilayer nanodots by scanning probe microscopy. J Am Chem Soc 131(5):1634–1635CrossRef Lee G, Shin Y-H, Son JY (2009) Formation of self-assembled polyelectrolyte multilayer nanodots by scanning probe microscopy. J Am Chem Soc 131(5):1634–1635CrossRef
18.
go back to reference Seemann L, Stemmer A, Naujoks N (2007) Local surface charges direct the deposition of carbon nanotubes and fullerenes into nanoscale patterns. Nano Lett 7(10):3007–3012CrossRef Seemann L, Stemmer A, Naujoks N (2007) Local surface charges direct the deposition of carbon nanotubes and fullerenes into nanoscale patterns. Nano Lett 7(10):3007–3012CrossRef
19.
go back to reference Palleau E, Sangeetha NM, Viau G, Marty J-D, Ressier L (2011) Coulomb force directed single and binary assembly of nanoparticles from aqueous dispersions by Afm nanoxerography. ACS Nano 5(5):4228–4235CrossRef Palleau E, Sangeetha NM, Viau G, Marty J-D, Ressier L (2011) Coulomb force directed single and binary assembly of nanoparticles from aqueous dispersions by Afm nanoxerography. ACS Nano 5(5):4228–4235CrossRef
20.
go back to reference Yue S, Xueqiang Z, Ying W, Xuejiao Z, Jun H, Shouwu G, Yi Z (2013) Charge transfer between reduced graphene oxide sheets on insulating substrates. Appl Phys Lett 103(5):053107 (4 pp)–053107 (4 pp) Yue S, Xueqiang Z, Ying W, Xuejiao Z, Jun H, Shouwu G, Yi Z (2013) Charge transfer between reduced graphene oxide sheets on insulating substrates. Appl Phys Lett 103(5):053107 (4 pp)–053107 (4 pp)
21.
go back to reference Verdaguer A, Cardellach M, Segura J, Sacha G, Moser J, Zdrojek M, Bachtold A, Fraxedas J (2009) Charging and discharging of graphene in ambient conditions studied with scanning probe microscopy. Appl Phys Lett 94(23):233105–233105-3CrossRef Verdaguer A, Cardellach M, Segura J, Sacha G, Moser J, Zdrojek M, Bachtold A, Fraxedas J (2009) Charging and discharging of graphene in ambient conditions studied with scanning probe microscopy. Appl Phys Lett 94(23):233105–233105-3CrossRef
22.
go back to reference Moser J, Verdaguer A, Jimenez D, Barreiro A, Bachtold A (2008) The environment of graphene probed by electrostatic force microscopy. Appl Phys Lett 92(12):123507–123507-3CrossRef Moser J, Verdaguer A, Jimenez D, Barreiro A, Bachtold A (2008) The environment of graphene probed by electrostatic force microscopy. Appl Phys Lett 92(12):123507–123507-3CrossRef
23.
go back to reference Guo LQ, Zhao XM, Bai Y, Qiao LJ (2012) Water adsorption behavior on metal surfaces and its influence on surface potential studied by in situ Spm. Appl Surf Sci 258(22):9087–9091CrossRef Guo LQ, Zhao XM, Bai Y, Qiao LJ (2012) Water adsorption behavior on metal surfaces and its influence on surface potential studied by in situ Spm. Appl Surf Sci 258(22):9087–9091CrossRef
24.
go back to reference Craig PP, Radeka V (1970) Stress dependence of contact potential: the Ac Kelvin method. Rev Sci Instrum 41(2):258–264CrossRef Craig PP, Radeka V (1970) Stress dependence of contact potential: the Ac Kelvin method. Rev Sci Instrum 41(2):258–264CrossRef
25.
go back to reference Goryl M, Kolodziej J, Krok F, Piatkowski P, Such B, Szymonski M (2005) Epitaxial nanostructures assembled on Insb (001) by submonolayer deposition of gold. Microelec Eng 81(2):394–399CrossRef Goryl M, Kolodziej J, Krok F, Piatkowski P, Such B, Szymonski M (2005) Epitaxial nanostructures assembled on Insb (001) by submonolayer deposition of gold. Microelec Eng 81(2):394–399CrossRef
26.
go back to reference Krok F, Sajewicz K, Konior J, Goryl M, Piatkowski P, Szymonski M (2008) Lateral resolution and potential sensitivity in Kelvin probe force microscopy: towards understanding of the sub-nanometer resolution. Phys Rev B 77(23):235427CrossRef Krok F, Sajewicz K, Konior J, Goryl M, Piatkowski P, Szymonski M (2008) Lateral resolution and potential sensitivity in Kelvin probe force microscopy: towards understanding of the sub-nanometer resolution. Phys Rev B 77(23):235427CrossRef
27.
go back to reference Shusterman S, Raizman A, Sher A, Paltiel Y, Schwarzman A, Lepkifker E, Rosenwaks Y (2007) Nanoscale mapping of strain and composition in quantum dots using Kelvin probe force microscopy. Nano Lett 7(7):2089–2093CrossRef Shusterman S, Raizman A, Sher A, Paltiel Y, Schwarzman A, Lepkifker E, Rosenwaks Y (2007) Nanoscale mapping of strain and composition in quantum dots using Kelvin probe force microscopy. Nano Lett 7(7):2089–2093CrossRef
28.
go back to reference Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712CrossRef Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712CrossRef
29.
go back to reference Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113(5):3766–3798CrossRef Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113(5):3766–3798CrossRef
30.
go back to reference Li Y, Xu C-Y, Zhen L (2013) Surface potential and interlayer screening effects of few-layer Mos 2 nanoflakes. Appl Phys Lett 102(14):143110–143110-4CrossRef Li Y, Xu C-Y, Zhen L (2013) Surface potential and interlayer screening effects of few-layer Mos 2 nanoflakes. Appl Phys Lett 102(14):143110–143110-4CrossRef
31.
go back to reference Datta SS, Strachan DR, Mele EJ, Johnson ATC (2009) Surface potentials and layer charge distributions in few-layer graphene films. Nano Lett 9(1):7–11CrossRef Datta SS, Strachan DR, Mele EJ, Johnson ATC (2009) Surface potentials and layer charge distributions in few-layer graphene films. Nano Lett 9(1):7–11CrossRef
32.
go back to reference Jaafar M, López-Polín G, Gómez-Navarro C, Gómez-Herrero J (2012) Step like surface potential on few layered graphene oxide. Appl Phys Lett 101(26):263109CrossRef Jaafar M, López-Polín G, Gómez-Navarro C, Gómez-Herrero J (2012) Step like surface potential on few layered graphene oxide. Appl Phys Lett 101(26):263109CrossRef
33.
go back to reference Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MS, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103(38):8116–8121CrossRef Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MS, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103(38):8116–8121CrossRef
34.
go back to reference Shiraishi M, Ata M (2001) Work function of carbon nanotubes. Carbon 39(12):1913–1917CrossRef Shiraishi M, Ata M (2001) Work function of carbon nanotubes. Carbon 39(12):1913–1917CrossRef
35.
go back to reference Suzuki S, Bower C, Watanabe Y, Zhou O (2000) Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles. Appl Phys Lett 76(26):4007–4009CrossRef Suzuki S, Bower C, Watanabe Y, Zhou O (2000) Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles. Appl Phys Lett 76(26):4007–4009CrossRef
36.
go back to reference Spadafora EJ, Saint-Aubin K, Celle C, Demadrille R, Grévin B, Simonato J-P (2012) Work function tuning for flexible transparent electrodes based on functionalized metallic single walled carbon nanotubes. Carbon 50(10):3459–3464CrossRef Spadafora EJ, Saint-Aubin K, Celle C, Demadrille R, Grévin B, Simonato J-P (2012) Work function tuning for flexible transparent electrodes based on functionalized metallic single walled carbon nanotubes. Carbon 50(10):3459–3464CrossRef
37.
go back to reference Martel RA, Schmidt T, Shea H, Hertel T, Avouris P (1998) Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447CrossRef Martel RA, Schmidt T, Shea H, Hertel T, Avouris P (1998) Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447CrossRef
38.
go back to reference Tans SJ, Verschueren AR, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393(6680):49–52CrossRef Tans SJ, Verschueren AR, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393(6680):49–52CrossRef
39.
go back to reference Derycke V, Martel R, Appenzeller J, Avouris P (2001) Carbon nanotube inter-and intramolecular logic gates. Nano Lett 1(9):453–456CrossRef Derycke V, Martel R, Appenzeller J, Avouris P (2001) Carbon nanotube inter-and intramolecular logic gates. Nano Lett 1(9):453–456CrossRef
40.
go back to reference Derycke V, Martel R, Appenzeller J, Avouris P (2002) Controlling doping and carrier injection in carbon nanotube transistors. Appl Phys Lett 80:2773CrossRef Derycke V, Martel R, Appenzeller J, Avouris P (2002) Controlling doping and carrier injection in carbon nanotube transistors. Appl Phys Lett 80:2773CrossRef
41.
go back to reference Cui X, Freitag M, Martel R, Brus L, Avouris P (2003) Controlling energy-level alignments at carbon nanotube/Au contacts. Nano Lett 3(6):783–787CrossRef Cui X, Freitag M, Martel R, Brus L, Avouris P (2003) Controlling energy-level alignments at carbon nanotube/Au contacts. Nano Lett 3(6):783–787CrossRef
42.
go back to reference Filleter T, Emtsev K, Seyller T, Bennewitz R (2008) Local work function measurements of epitaxial graphene. Appl Phys Lett 93(13):133117–133117-3CrossRef Filleter T, Emtsev K, Seyller T, Bennewitz R (2008) Local work function measurements of epitaxial graphene. Appl Phys Lett 93(13):133117–133117-3CrossRef
43.
go back to reference Casiraghi C, Pisana S, Novoselov K, Geim A, Ferrari A (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91(23):233108–233108-3CrossRef Casiraghi C, Pisana S, Novoselov K, Geim A, Ferrari A (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91(23):233108–233108-3CrossRef
44.
go back to reference Yan J, Henriksen EA, Kim P, Pinczuk A (2008) Observation of anomalous phonon softening in bilayer graphene. Phys Rev Lett 101(13):136804CrossRef Yan J, Henriksen EA, Kim P, Pinczuk A (2008) Observation of anomalous phonon softening in bilayer graphene. Phys Rev Lett 101(13):136804CrossRef
45.
go back to reference Yan J, Zhang Y, Kim P, Pinczuk A (2007) Electric field effect tuning of electron–phonon coupling in graphene. Phys Rev Lett 98(16):166802CrossRef Yan J, Zhang Y, Kim P, Pinczuk A (2007) Electric field effect tuning of electron–phonon coupling in graphene. Phys Rev Lett 98(16):166802CrossRef
46.
go back to reference Shi Y, Kim KK, Reina A, Hofmann M, Li L-J, Kong J (2010) Work function engineering of graphene electrode via chemical doping. ACS Nano 4(5):2689–2694CrossRef Shi Y, Kim KK, Reina A, Hofmann M, Li L-J, Kong J (2010) Work function engineering of graphene electrode via chemical doping. ACS Nano 4(5):2689–2694CrossRef
47.
go back to reference Wang R, Wang S, Zhang D, Li Z, Fang Y, Qiu X (2010) Control of carrier type and density in exfoliated graphene by interface engineering. ACS Nano 5(1):408–412CrossRef Wang R, Wang S, Zhang D, Li Z, Fang Y, Qiu X (2010) Control of carrier type and density in exfoliated graphene by interface engineering. ACS Nano 5(1):408–412CrossRef
48.
go back to reference Bußmann BK, Ochedowski O, Schleberger M (2011) Doping of graphene exfoliated on Srtio3. Nanotechnology 22(26):265703CrossRef Bußmann BK, Ochedowski O, Schleberger M (2011) Doping of graphene exfoliated on Srtio3. Nanotechnology 22(26):265703CrossRef
49.
go back to reference Wang X, Xu J-B, Xie W, Du J (2011) Quantitative analysis of graphene doping by organic molecular charge transfer. J Phys Chem C 115(15):7596–7602CrossRef Wang X, Xu J-B, Xie W, Du J (2011) Quantitative analysis of graphene doping by organic molecular charge transfer. J Phys Chem C 115(15):7596–7602CrossRef
50.
go back to reference Pearce R, Eriksson J, Iakimov T, Hultman L, Lloyd Spetz PA, Yakimova R (2013) On the differing sensitivity to chemical gating of single and double layer epitaxial graphene explored using scanning Kelvin probe microscopy. ACS Nano 7:4647–4656CrossRef Pearce R, Eriksson J, Iakimov T, Hultman L, Lloyd Spetz PA, Yakimova R (2013) On the differing sensitivity to chemical gating of single and double layer epitaxial graphene explored using scanning Kelvin probe microscopy. ACS Nano 7:4647–4656CrossRef
51.
go back to reference Zhou X, He S, Brown KA, Mendez-Arroyo J, Boey F, Mirkin CA (2013) Locally altering the electronic properties of graphene by nanoscopically doping it with rhodamine 6 g. Nano Lett 13(4):1616–1621 Zhou X, He S, Brown KA, Mendez-Arroyo J, Boey F, Mirkin CA (2013) Locally altering the electronic properties of graphene by nanoscopically doping it with rhodamine 6 g. Nano Lett 13(4):1616–1621
52.
go back to reference Sque SJ, Jones R, Briddon PR (2007) The transfer doping of graphite and graphene. Phys Status Solidi (a) 204(9):3078–3084CrossRef Sque SJ, Jones R, Briddon PR (2007) The transfer doping of graphite and graphene. Phys Status Solidi (a) 204(9):3078–3084CrossRef
53.
go back to reference Cherniavskaya O, Chen L, Islam MA, Brus L (2003) Photoionization of individual Cdse/Cds core/shell nanocrystals on silicon with 2-Nm oxide depends on surface band bending. Nano Lett 3(4):497–501CrossRef Cherniavskaya O, Chen L, Islam MA, Brus L (2003) Photoionization of individual Cdse/Cds core/shell nanocrystals on silicon with 2-Nm oxide depends on surface band bending. Nano Lett 3(4):497–501CrossRef
54.
go back to reference Ludeke R, Cartier E (2001) Imaging of trapped charge in Sio 2 and at the Sio 2–Si interface. Appl Phys Lett 78(25):3998–4000CrossRef Ludeke R, Cartier E (2001) Imaging of trapped charge in Sio 2 and at the Sio 2–Si interface. Appl Phys Lett 78(25):3998–4000CrossRef
55.
go back to reference Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on Tio2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758CrossRef Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on Tio2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758CrossRef
56.
go back to reference Sasahara A, Pang CL, Onishi H (2006) Probe microscope observation of platinum atoms deposited on the Tio2 (110)-(1 × 1) surface. J Phys Chem B 110(27):13453–13457CrossRef Sasahara A, Pang CL, Onishi H (2006) Probe microscope observation of platinum atoms deposited on the Tio2 (110)-(1 × 1) surface. J Phys Chem B 110(27):13453–13457CrossRef
57.
go back to reference Sasahara A, Pang CL, Onishi H (2006) Local work function of Pt clusters vacuum-deposited on a Tio2 surface. J Phys Chem B 110(35):17584–17588CrossRef Sasahara A, Pang CL, Onishi H (2006) Local work function of Pt clusters vacuum-deposited on a Tio2 surface. J Phys Chem B 110(35):17584–17588CrossRef
58.
go back to reference Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115(2):301–309CrossRef Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115(2):301–309CrossRef
59.
go back to reference Chung HJ, Yurtsever A, Sugimoto Y, Abe M, Morita S (2011) Kelvin probe force microscopy characterization of Tio2 (110)-supported Au clusters. Appl Phys Lett 99(12):123102CrossRef Chung HJ, Yurtsever A, Sugimoto Y, Abe M, Morita S (2011) Kelvin probe force microscopy characterization of Tio2 (110)-supported Au clusters. Appl Phys Lett 99(12):123102CrossRef
60.
go back to reference Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835):222–225CrossRef Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835):222–225CrossRef
61.
go back to reference Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868CrossRef Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868CrossRef
62.
go back to reference Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells – enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791CrossRef Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells – enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791CrossRef
63.
go back to reference Li C, Chen Y, Wang Y, Iqbal Z, Chhowalla M, Mitra S (2007) A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J Mater Chem 17(23):2406–2411CrossRef Li C, Chen Y, Wang Y, Iqbal Z, Chhowalla M, Mitra S (2007) A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J Mater Chem 17(23):2406–2411CrossRef
64.
go back to reference Liu L, Stanchina WE, Li G (2009) Effects of semiconducting and metallic single-walled carbon nanotubes on performance of bulk heterojunction organic solar cells. Appl Phys Lett 94(23):233309–233309-3CrossRef Liu L, Stanchina WE, Li G (2009) Effects of semiconducting and metallic single-walled carbon nanotubes on performance of bulk heterojunction organic solar cells. Appl Phys Lett 94(23):233309–233309-3CrossRef
65.
go back to reference Kymakis E, Alexandrou I, Amaratunga G (2003) High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J Appl Phys 93(3):1764–1768CrossRef Kymakis E, Alexandrou I, Amaratunga G (2003) High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J Appl Phys 93(3):1764–1768CrossRef
66.
go back to reference Ren S, Bernardi M, Lunt RR, Bulovic V, Grossman JC, Gradecak S (2011) Toward efficient carbon nanotube/P3ht solar cells: active layer morphology, electrical, and optical properties. Nano Lett 11(12):5316–5321CrossRef Ren S, Bernardi M, Lunt RR, Bulovic V, Grossman JC, Gradecak S (2011) Toward efficient carbon nanotube/P3ht solar cells: active layer morphology, electrical, and optical properties. Nano Lett 11(12):5316–5321CrossRef
67.
go back to reference Lan F, Li G (2013) Direct observation of hole transfer from semiconducting polymer to carbon nanotubes. Nano Lett 13(5):2086–2091CrossRef Lan F, Li G (2013) Direct observation of hole transfer from semiconducting polymer to carbon nanotubes. Nano Lett 13(5):2086–2091CrossRef
68.
go back to reference Dimitrakopoulos CD, Malenfant PR (2002) Organic thin film transistors for large area electronics. Adv Mater 14(2):99–117CrossRef Dimitrakopoulos CD, Malenfant PR (2002) Organic thin film transistors for large area electronics. Adv Mater 14(2):99–117CrossRef
69.
go back to reference Burgi L, Richards T, Friend R, Sirringhaus H (2003) Close look at charge carrier injection in polymer field-effect transistors. J Appl Phys 94(9):6129–6137CrossRef Burgi L, Richards T, Friend R, Sirringhaus H (2003) Close look at charge carrier injection in polymer field-effect transistors. J Appl Phys 94(9):6129–6137CrossRef
70.
go back to reference Dawidczyk T, Johns G, Ozgun R, Alley O, Andreou A, Markovic N, Katz H (2012) Kelvin probe microscopic visualization of charge storage at polystyrene interfaces with pentacene and gold. Appl Phys Lett 100(7):073305CrossRef Dawidczyk T, Johns G, Ozgun R, Alley O, Andreou A, Markovic N, Katz H (2012) Kelvin probe microscopic visualization of charge storage at polystyrene interfaces with pentacene and gold. Appl Phys Lett 100(7):073305CrossRef
71.
72.
go back to reference McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. Nanotechnol, IEEE Trans 1(1):78–85CrossRef McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. Nanotechnol, IEEE Trans 1(1):78–85CrossRef
73.
go back to reference Miyato Y, Kobayashi K, Matsushige K, Yamada H (2007) Surface potential investigation on single wall carbon nanotubes by Kelvin probe force microscopy and atomic force microscope potentiometry. Nanotechnology 18(8):084008CrossRef Miyato Y, Kobayashi K, Matsushige K, Yamada H (2007) Surface potential investigation on single wall carbon nanotubes by Kelvin probe force microscopy and atomic force microscope potentiometry. Nanotechnology 18(8):084008CrossRef
74.
go back to reference Okigawa Y, Umesaka T, Ohno Y, Kishimoto S, Mizutani T (2008) Potential profile measurement of carbon nanotube fets based on the electrostatic force detection. Nano 3(01):51–54CrossRef Okigawa Y, Umesaka T, Ohno Y, Kishimoto S, Mizutani T (2008) Potential profile measurement of carbon nanotube fets based on the electrostatic force detection. Nano 3(01):51–54CrossRef
75.
go back to reference Lee N, Yoo J, Choi Y, Kang C, Jeon D, Kim D, Seo S, Chung H (2009) The interlayer screening effect of graphene sheets investigated by Kelvin probe force microscopy. Appl Phys Lett 95(22):222107–222107-3CrossRef Lee N, Yoo J, Choi Y, Kang C, Jeon D, Kim D, Seo S, Chung H (2009) The interlayer screening effect of graphene sheets investigated by Kelvin probe force microscopy. Appl Phys Lett 95(22):222107–222107-3CrossRef
76.
go back to reference Küppers J, Wandelt K, Ertl G (1979) Influence of the local surface structure on the 5p photoemission of adsorbed xenon. Phys Rev Lett 43(13):928CrossRef Küppers J, Wandelt K, Ertl G (1979) Influence of the local surface structure on the 5p photoemission of adsorbed xenon. Phys Rev Lett 43(13):928CrossRef
77.
go back to reference Wandelt K (1997) The local work function: concept and implications. Appl Surf Sci 111:1–10CrossRef Wandelt K (1997) The local work function: concept and implications. Appl Surf Sci 111:1–10CrossRef
78.
go back to reference Bocquet F, Nony L, Loppacher C, Glatzel T (2008) Analytical approach to the local contact potential difference on (001) ionic surfaces: implications for Kelvin probe force microscopy. Phys Rev B 78(3):035410CrossRef Bocquet F, Nony L, Loppacher C, Glatzel T (2008) Analytical approach to the local contact potential difference on (001) ionic surfaces: implications for Kelvin probe force microscopy. Phys Rev B 78(3):035410CrossRef
79.
go back to reference Arai T, Tomitori M (2004) Observation of electronic states on Si (111)-(7 × 7) through short-range attractive force with noncontact atomic force spectroscopy. Phys Rev Lett 93(25):256101CrossRef Arai T, Tomitori M (2004) Observation of electronic states on Si (111)-(7 × 7) through short-range attractive force with noncontact atomic force spectroscopy. Phys Rev Lett 93(25):256101CrossRef
80.
go back to reference Kitamura S, Iwatsuki M (1998) High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope. Appl Phys Lett 72(24):3154–3156CrossRef Kitamura S, Iwatsuki M (1998) High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope. Appl Phys Lett 72(24):3154–3156CrossRef
81.
go back to reference Kitamura SI, Suzuki K, Iwatsuki M, Mooney C (2000) Atomic-scale variations in contact potential difference on Au/Si (111) 7 × 7 surface in ultrahigh vacuum. Appl Surf Sci 157(4):222–227CrossRef Kitamura SI, Suzuki K, Iwatsuki M, Mooney C (2000) Atomic-scale variations in contact potential difference on Au/Si (111) 7 × 7 surface in ultrahigh vacuum. Appl Surf Sci 157(4):222–227CrossRef
82.
go back to reference Okamoto K, Sugawara Y, Morita S (2002) The elimination of the ‘Artifact’ in the electrostatic force measurement using a novel noncontact atomic force microscope/electrostatic force microscope. Appl Surf Sci 188(3):381–385CrossRef Okamoto K, Sugawara Y, Morita S (2002) The elimination of the ‘Artifact’ in the electrostatic force measurement using a novel noncontact atomic force microscope/electrostatic force microscope. Appl Surf Sci 188(3):381–385CrossRef
83.
go back to reference Okamoto K, Yoshimoto K, Sugawara Y, Morita S (2003) Kpfm imaging of Si(111)5 root 3 × 5 root 3-Sb surface for atom distinction using Nc-Afm. Appl Surf Sci 210(1–2):128–133CrossRef Okamoto K, Yoshimoto K, Sugawara Y, Morita S (2003) Kpfm imaging of Si(111)5 root 3 × 5 root 3-Sb surface for atom distinction using Nc-Afm. Appl Surf Sci 210(1–2):128–133CrossRef
84.
go back to reference Enevoldsen GH, Glatzel T, Christensen MC, Lauritsen JV, Besenbacher F (2008) Atomic scale Kelvin probe force microscopy studies of the surface potential variations on the Tio(2)(110) surface. Phys Rev Lett 100(23):236104CrossRef Enevoldsen GH, Glatzel T, Christensen MC, Lauritsen JV, Besenbacher F (2008) Atomic scale Kelvin probe force microscopy studies of the surface potential variations on the Tio(2)(110) surface. Phys Rev Lett 100(23):236104CrossRef
85.
go back to reference Gross L, Mohn F, Liljeroth P, Repp J, Giessibl FJ, Meyer G (2009) Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324(5933):1428–1431CrossRef Gross L, Mohn F, Liljeroth P, Repp J, Giessibl FJ, Meyer G (2009) Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324(5933):1428–1431CrossRef
86.
go back to reference Leoni T, Guillermet O, Walch H, Langlais V, Scheuermann A, Bonvoisin J, Gauthier S (2011) Controlling the charge state of a single redox molecular switch. Phys Rev Lett 106(21):216103CrossRef Leoni T, Guillermet O, Walch H, Langlais V, Scheuermann A, Bonvoisin J, Gauthier S (2011) Controlling the charge state of a single redox molecular switch. Phys Rev Lett 106(21):216103CrossRef
87.
go back to reference Mohn F, Gross L, Moll N, Meyer G (2012) Imaging the charge distribution within a single molecule. Nat Nanotechnol 7(4):227–231CrossRef Mohn F, Gross L, Moll N, Meyer G (2012) Imaging the charge distribution within a single molecule. Nat Nanotechnol 7(4):227–231CrossRef
88.
go back to reference Walch H, Leoni T, Guillermet O, Langlais V, Scheuermann A, Bonvoisin J, Gauthier S (2012) Electromechanical switching behavior of individual molecular complexes of Cu and Ni on Nacl-covered Cu (111) and Ag (111). Phys Rev B 86(7):075423CrossRef Walch H, Leoni T, Guillermet O, Langlais V, Scheuermann A, Bonvoisin J, Gauthier S (2012) Electromechanical switching behavior of individual molecular complexes of Cu and Ni on Nacl-covered Cu (111) and Ag (111). Phys Rev B 86(7):075423CrossRef
89.
go back to reference Liljeroth P, Repp J, Meyer G (2007) Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317(5842):1203–1206CrossRef Liljeroth P, Repp J, Meyer G (2007) Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317(5842):1203–1206CrossRef
Metadata
Title
Kelvin Probe Force Microscopy in Nanoscience and Nanotechnology
Authors
Da Luo
Hao Sun
Yan Li
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-44551-8_4

Premium Partners