Skip to main content
Top
Published in: Polymer Science, Series D 4/2023

01-12-2023

Kinetic Modeling of Synthesis of Cumene Hydroperoxide (a Curing Initiator for Acrylic Glues) in the Presence of Mg, Ca, Sr, or Ba 2-Ethylhexanoate as a Catalyst

Authors: N. V. Ulitin, N. A. Novikov, K. A. Tereshchenko, D. A. Shiyan, Ya. L. Lyulinskaya, N. M. Nurullina, M. N. Denisova, O. V. Stoyanov, Kh. E. Kharlampidi

Published in: Polymer Science, Series D | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A kinetic modeling was carried out for the synthesis of cumene hydroperoxide (an initiator of curing for acrylic adhesives) based on cumene oxidation in the presence of Mg, Ca, Sr, or Ba 2-ethylhexanoate as a catalyst. The kinetic model includes the formation reactions of intermediate components of the reaction mixture–catalyst adducts, the initiation reactions, the propagation and chain termination reactions, and molecular reactions characterizing both noncatalytic and catalytic cumene oxidation, as well as specific reactions caused by the catalytic properties of 2-ethylhexanoates of nontransition metals. The kinetic model reproduces the concentrations of reaction mixture components depending on time within the experimental data error, which confirms the kinetic scheme included in the model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. V. Pocius, Adhesion and Adhesives Technology: an Introduction, 3rd ed. (Carl Hanser Verlag, Munich, 2012).CrossRef A. V. Pocius, Adhesion and Adhesives Technology: an Introduction, 3rd ed. (Carl Hanser Verlag, Munich, 2012).CrossRef
2.
go back to reference H. Hock and S. Lang, “Autoxydation von Kohlenwasserstoffen, IX. Mitteil.: Uber Peroxyde von Benzol-Derivaten,” Ber. Dtsch. Chem. Ges. 77, 257–264 (1944).CrossRef H. Hock and S. Lang, “Autoxydation von Kohlenwasserstoffen, IX. Mitteil.: Uber Peroxyde von Benzol-Derivaten,” Ber. Dtsch. Chem. Ges. 77, 257–264 (1944).CrossRef
3.
go back to reference “Global cumene market size study, by production (zeolite, solid phosphoric acid, aluminum chloride), by application (phenol, acetone, others), and regional forecasts,” http://www.giiresearch.com/report/ bzc1090047-global-cumene-marketsize-study-by-production.html. (Accessed June 9, 2022) “Global cumene market size study, by production (zeolite, solid phosphoric acid, aluminum chloride), by application (phenol, acetone, others), and regional forecasts,” http://​www.​giiresearch.​com/​report/​ bzc1090047-global-cumene-marketsize-study-by-production.html. (Accessed June 9, 2022)
4.
go back to reference J. R. Bryant, T. Matsuo, and J. M. Mayer, “Cumene oxidation by cis-[RuIV(bpy)2(py)(O)]2+, revisited,” Inorg. Chem. 43, 1587–1592 (2004).CrossRefPubMed J. R. Bryant, T. Matsuo, and J. M. Mayer, “Cumene oxidation by cis-[RuIV(bpy)2(py)(O)]2+, revisited,” Inorg. Chem. 43, 1587–1592 (2004).CrossRefPubMed
5.
go back to reference M. Weber, J.-B. G. Daldrup, and M. Weber, “Noncatalyzed Radical Chain Oxidation: Cumene Hydroperoxide,” in Liquid Phase Aerobic Oxidation Catalysis (Wiley-VCH, Weinheim, 2016). M. Weber, J.-B. G. Daldrup, and M. Weber, “Noncatalyzed Radical Chain Oxidation: Cumene Hydroperoxide,” in Liquid Phase Aerobic Oxidation Catalysis (Wiley-VCH, Weinheim, 2016).
6.
go back to reference A. Nowacka, P. Briantais, C. Prestipino, and F. X. Llabrés i Xamena, “Selective aerobic oxidation of cumene to cumene hydroperoxide over mono- and bimetallic trimesate metal-organic frameworks prepared by a facile “green” aqueous synthesis,” ACS Sustainable Chem. Eng. 7, 7708–7715 (2019).CrossRef A. Nowacka, P. Briantais, C. Prestipino, and F. X. Llabrés i Xamena, “Selective aerobic oxidation of cumene to cumene hydroperoxide over mono- and bimetallic trimesate metal-organic frameworks prepared by a facile “green” aqueous synthesis,” ACS Sustainable Chem. Eng. 7, 7708–7715 (2019).CrossRef
7.
go back to reference C.-O. L. Crites, G. L. Hallett-Tapley, M. Frenette, M. González-Béjar, J. C. Netto-Ferreira, and J. C. Scaiano, “Insights into the mechanism of cumene peroxidation using supported gold and silver nanoparticles,” ACS Catal. 3, 2062–2071 (2013).CrossRef C.-O. L. Crites, G. L. Hallett-Tapley, M. Frenette, M. González-Béjar, J. C. Netto-Ferreira, and J. C. Scaiano, “Insights into the mechanism of cumene peroxidation using supported gold and silver nanoparticles,” ACS Catal. 3, 2062–2071 (2013).CrossRef
8.
go back to reference N. Turovskij, E. Raksha, Y. Berestneva, and A. Eresko, “Anion effect on the cumene hydroperoxide decomposition in the presence of Cu (II) 1,10-phenanthrolinates,” J. Organometall. Chem. 922, 121371 (2020).CrossRef N. Turovskij, E. Raksha, Y. Berestneva, and A. Eresko, “Anion effect on the cumene hydroperoxide decomposition in the presence of Cu (II) 1,10-phenanthrolinates,” J. Organometall. Chem. 922, 121371 (2020).CrossRef
9.
go back to reference L. I. Matienko, V. I. Binyukov, E. M. Mil, and G. E. Zaikov, “Supramolecular macrostructures in the mechanisms of catalysis with nickel or iron heteroligand complexes,” Curr. Organocatal. 6, 36–43 (2019).CrossRef L. I. Matienko, V. I. Binyukov, E. M. Mil, and G. E. Zaikov, “Supramolecular macrostructures in the mechanisms of catalysis with nickel or iron heteroligand complexes,” Curr. Organocatal. 6, 36–43 (2019).CrossRef
10.
go back to reference Ch. Mu, Y. Cao, H. Wang, H. Yu, F. Peng, “A kinetics study on cumene oxidation catalyzed by carbon nanotubes: effect of N-doping,” Chem. Eng. Sci. 177, 391–398 (2018).CrossRef Ch. Mu, Y. Cao, H. Wang, H. Yu, F. Peng, “A kinetics study on cumene oxidation catalyzed by carbon nanotubes: effect of N-doping,” Chem. Eng. Sci. 177, 391–398 (2018).CrossRef
11.
go back to reference O. T. Kasaikina, N. V. Potapova, D. A. Krugovov, and L. M. Pisarenko, “Catalysis of radical reactions in mixed micelles of surfactants with hydroperoxides,” Kinet. Catal. 58, 556–562 (2017).CrossRef O. T. Kasaikina, N. V. Potapova, D. A. Krugovov, and L. M. Pisarenko, “Catalysis of radical reactions in mixed micelles of surfactants with hydroperoxides,” Kinet. Catal. 58, 556–562 (2017).CrossRef
12.
go back to reference Q. Lu, G. Shi, H. Zhou, E. Yuan, Ch. Chen, and I. Ji, “A highly efficient transformation from cumene to cumyl hydroperoxide via catalytic aerobic oxidation at room temperature and investigations into solvent effects, reaction networks and mechanisms,” Appl. Catal., A 630, 118441 (2022). Q. Lu, G. Shi, H. Zhou, E. Yuan, Ch. Chen, and I. Ji, “A highly efficient transformation from cumene to cumyl hydroperoxide via catalytic aerobic oxidation at room temperature and investigations into solvent effects, reaction networks and mechanisms,” Appl. Catal., A 630, 118441 (2022).
13.
go back to reference N. I. Kuznetsova, D. E. Babushkin, V. N. Zudin, O. S. Koscheeva, and L. I. Kuznetsova, “Low-temperature oxidation of isopropylbenzene mediated by the system of NHPI, Fe(acac)3 and 1,10-phenanthroline,” Catal. Commun. 149, 106218 (2021).CrossRef N. I. Kuznetsova, D. E. Babushkin, V. N. Zudin, O. S. Koscheeva, and L. I. Kuznetsova, “Low-temperature oxidation of isopropylbenzene mediated by the system of NHPI, Fe(acac)3 and 1,10-phenanthroline,” Catal. Commun. 149, 106218 (2021).CrossRef
14.
go back to reference N. V. Ulitin, Kh. E. Kharlampidi, K. A. Tereshchenko, N. A. Novikov, D. A. Shiyan, T. Sh. Nurmurodov, N. M. Nurullina, N. N. Ziyatdinov, and N. P. Miroshkin, “The cumene oxidation and cumene hydroperoxide decomposition in the presence of Zn, Cd or Hg 2‑ethylhexanoate: kinetic model and analysis of its sensitivity,” Mol. Catal. 515, 111886 (2021).CrossRef N. V. Ulitin, Kh. E. Kharlampidi, K. A. Tereshchenko, N. A. Novikov, D. A. Shiyan, T. Sh. Nurmurodov, N. M. Nurullina, N. N. Ziyatdinov, and N. P. Miroshkin, “The cumene oxidation and cumene hydroperoxide decomposition in the presence of Zn, Cd or Hg 2‑ethylhexanoate: kinetic model and analysis of its sensitivity,” Mol. Catal. 515, 111886 (2021).CrossRef
15.
go back to reference E. D. Dolan, R. M. Lewis, and V. Torczon, “On the local convergence of pattern search,” SIAM J. Optim. 14, 567–583 (2003).CrossRef E. D. Dolan, R. M. Lewis, and V. Torczon, “On the local convergence of pattern search,” SIAM J. Optim. 14, 567–583 (2003).CrossRef
16.
go back to reference Kh. E. Kharlampidi, K. A. Tereshchenko, T. Sh. Nurmurodov, D. A. Shiyan, N. P. Miroshkin, N. N. Ziyatdinov, A. S. Ziganshina, N. M. Nurullina, S. L. Khursan, and N. V. Ulitin, “The kinetic modeling of cumene oxidation taking into account oxygen mass transfer,” Chem. Eng. J. 392, 123811 (2020).CrossRef Kh. E. Kharlampidi, K. A. Tereshchenko, T. Sh. Nurmurodov, D. A. Shiyan, N. P. Miroshkin, N. N. Ziyatdinov, A. S. Ziganshina, N. M. Nurullina, S. L. Khursan, and N. V. Ulitin, “The kinetic modeling of cumene oxidation taking into account oxygen mass transfer,” Chem. Eng. J. 392, 123811 (2020).CrossRef
17.
go back to reference D. K. Dumbre, V. R. Choudhary, N. S. Patil, B. S. Uphade, and S. K. Bhargava, “Calcium oxide supported gold nanoparticles as catalysts for the selective epoxidation of styrene by t-butyl hydroperoxide,” J. Coll. Interface Sci. 415, 111–116 (2014).CrossRef D. K. Dumbre, V. R. Choudhary, N. S. Patil, B. S. Uphade, and S. K. Bhargava, “Calcium oxide supported gold nanoparticles as catalysts for the selective epoxidation of styrene by t-butyl hydroperoxide,” J. Coll. Interface Sci. 415, 111–116 (2014).CrossRef
18.
go back to reference W. Maudez, D. Haussinger, and K. M. Fromm, “Substitution reactions on CaI2: synthesis of mixed metal lithium-calcium-phenolates, and cluster transformation as a function of solvent,” Z. Anorg. Allg. Chem. 632, 2295–2298 (2006).CrossRef W. Maudez, D. Haussinger, and K. M. Fromm, “Substitution reactions on CaI2: synthesis of mixed metal lithium-calcium-phenolates, and cluster transformation as a function of solvent,” Z. Anorg. Allg. Chem. 632, 2295–2298 (2006).CrossRef
Metadata
Title
Kinetic Modeling of Synthesis of Cumene Hydroperoxide (a Curing Initiator for Acrylic Glues) in the Presence of Mg, Ca, Sr, or Ba 2-Ethylhexanoate as a Catalyst
Authors
N. V. Ulitin
N. A. Novikov
K. A. Tereshchenko
D. A. Shiyan
Ya. L. Lyulinskaya
N. M. Nurullina
M. N. Denisova
O. V. Stoyanov
Kh. E. Kharlampidi
Publication date
01-12-2023
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 4/2023
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421223040366

Other articles of this Issue 4/2023

Polymer Science, Series D 4/2023 Go to the issue

Premium Partners