Skip to main content
Top
Published in: Polymer Science, Series D 2/2023

01-06-2023

Kinetics of Synthesis of N-Vinyl-2-Pyrrolidone Oligomers with Amino End Groups for Stabilization of Aqueous Gossypol Dispersions

Authors: A. N. Kuskov, M. V. Motyakin, I. I. Levina, A. M. Nechaeva, A. A. Artyukhov, M. I. Shtilman, Ya. O. Mezhuev

Published in: Polymer Science, Series D | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

By radical telomerization of N-vinyl-2-pyrrolidone in the presence of 2-aminoethanethiol an oligomer containing amino end groups and capable of stabilizing gossypol aqueous dispersions was synthesized. The telomerization kinetics of N-vinyl-2-pyrrolidone in the presence of 2-aminoethanethiol was studied by the dilatometric method, and the structure of the oligomer was characterized by 13C NMR spectroscopy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. Sattler, M. C. D. Carter, N. J. Irick, J. DeFelippis, and R. C. Even, “End-group control in the radical polymerization of methyl methacrylate with tert-butyl peroxypivalate initiator in the presence of thiol chain transfer agents,” ACS Appl. Polym. Mater. 2, 3936–3947 (2020).CrossRef W. Sattler, M. C. D. Carter, N. J. Irick, J. DeFelippis, and R. C. Even, “End-group control in the radical polymerization of methyl methacrylate with tert-butyl peroxypivalate initiator in the presence of thiol chain transfer agents,” ACS Appl. Polym. Mater. 2, 3936–3947 (2020).CrossRef
2.
go back to reference H. Willcock and R. K. O’Reilly, “End group removal and modification of RAFT polymers,” Polym. Chem. 1, 149–157 (2010).CrossRef H. Willcock and R. K. O’Reilly, “End group removal and modification of RAFT polymers,” Polym. Chem. 1, 149–157 (2010).CrossRef
3.
go back to reference A. Herberg, Yu. Xiaoqian, and D. Kuckling, “End group stability of atom transfer radical polymerization (ATRP)-synthesized poly(N-isopropylacrylamide): Perspectives for diblock copolymer synthesis,” Polymers 11, 678 (2019).CrossRefPubMedPubMedCentral A. Herberg, Yu. Xiaoqian, and D. Kuckling, “End group stability of atom transfer radical polymerization (ATRP)-synthesized poly(N-isopropylacrylamide): Perspectives for diblock copolymer synthesis,” Polymers 11, 678 (2019).CrossRefPubMedPubMedCentral
4.
go back to reference S. M. Stadler, I. Gottker-Schnetmann, A. S. Fuchs, et al., “Catalytic chain transfer polymerization to functional reactive end groups for controlled free radical growth,” Macromolecules 53, 2362–2368 (2020).CrossRef S. M. Stadler, I. Gottker-Schnetmann, A. S. Fuchs, et al., “Catalytic chain transfer polymerization to functional reactive end groups for controlled free radical growth,” Macromolecules 53, 2362–2368 (2020).CrossRef
5.
go back to reference A. Shegiwal, A. M. Wemyss, M. A. J. Schellekens, et al., “Exploiting catalytic chain transfer polymerization for the synthesis of carboxylated latexes via sulfur-free RAFT,” J. Polym. Sci. Part A Polym. Chem. 57, E1–E9 (2019).CrossRef A. Shegiwal, A. M. Wemyss, M. A. J. Schellekens, et al., “Exploiting catalytic chain transfer polymerization for the synthesis of carboxylated latexes via sulfur-free RAFT,” J. Polym. Sci. Part A Polym. Chem. 57, E1–E9 (2019).CrossRef
6.
go back to reference J. L. O’Brien and F.Gornick, “Chain transfer in the polymerization of methyl methacrylate. i. transfer with monomer and thiols. the mechanism of the termination reaction at 60,” J. Am. Chem. Soc. 77, 4757–4763 (1955).CrossRef J. L. O’Brien and F.Gornick, “Chain transfer in the polymerization of methyl methacrylate. i. transfer with monomer and thiols. the mechanism of the termination reaction at 60,” J. Am. Chem. Soc. 77, 4757–4763 (1955).CrossRef
7.
go back to reference V. P. Torchilin, T. S. Levchenko, K. R. Whiteman, et al., “Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification,” Biomaterials 22, 3035–3044 (2001).CrossRefPubMed V. P. Torchilin, T. S. Levchenko, K. R. Whiteman, et al., “Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification,” Biomaterials 22, 3035–3044 (2001).CrossRefPubMed
8.
go back to reference A. Tsatsakis, A. K. Stratidakis, and A. V. Goryachaya, “In vitro blood compatibility and in vitro cytotoxicity of amphiphilic poly-N-vinylpyrrolidone nanoparticles,” Food Chem. Tox. 127, 42–52 (2019).CrossRef A. Tsatsakis, A. K. Stratidakis, and A. V. Goryachaya, “In vitro blood compatibility and in vitro cytotoxicity of amphiphilic poly-N-vinylpyrrolidone nanoparticles,” Food Chem. Tox. 127, 42–52 (2019).CrossRef
9.
go back to reference A. N. Kuskov, P. P. Kulikov, A. V. Goryachaya, et al., “Amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for non-steroidal, anti-inflammatory drugs: in vitro cytotoxicity and in vivo acute toxicity study,” Nanomed.: Nanotechn. Biol. Med 13, 1021–1030 (2017).CrossRef A. N. Kuskov, P. P. Kulikov, A. V. Goryachaya, et al., “Amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for non-steroidal, anti-inflammatory drugs: in vitro cytotoxicity and in vivo acute toxicity study,” Nanomed.: Nanotechn. Biol. Med 13, 1021–1030 (2017).CrossRef
10.
go back to reference A. L. Luss, P. P. Kulikov, S. B. Romme, et al., “Nanosized carriers based on amphiphilic poly-N-vinyl-2-pyrrolidone for intranuclear drug delivery,” Nanomedicine 13, 703–715 (2018).CrossRefPubMed A. L. Luss, P. P. Kulikov, S. B. Romme, et al., “Nanosized carriers based on amphiphilic poly-N-vinyl-2-pyrrolidone for intranuclear drug delivery,” Nanomedicine 13, 703–715 (2018).CrossRefPubMed
11.
go back to reference M. Feng and P. Li, “Amine-containing core-shell nanoparticles as potential drug carriers for intracellular delivery,” J. Biomed. Mater. Res. A 80, 184–193 (2007).CrossRefPubMed M. Feng and P. Li, “Amine-containing core-shell nanoparticles as potential drug carriers for intracellular delivery,” J. Biomed. Mater. Res. A 80, 184–193 (2007).CrossRefPubMed
12.
go back to reference A. Van de Berg, “Action of cysteamine and cystamine on the metabolism of the kidney and liver of the male rat poisoned by sodium fluoroacetate,” Arch. Int. Physiol. Biochem. 69, 235–250 (1961). A. Van de Berg, “Action of cysteamine and cystamine on the metabolism of the kidney and liver of the male rat poisoned by sodium fluoroacetate,” Arch. Int. Physiol. Biochem. 69, 235–250 (1961).
13.
go back to reference P. Nicotera, P. Hartzell, C. Baldi, et al., “Cystamine induces toxicity in hepatocytes through the elevation of cytosolic Ca2+ and the stimulation of a nonlysosomal proteolytic system,” J. Biol. Chem. 261, 14628–14635 (1986).CrossRefPubMed P. Nicotera, P. Hartzell, C. Baldi, et al., “Cystamine induces toxicity in hepatocytes through the elevation of cytosolic Ca2+ and the stimulation of a nonlysosomal proteolytic system,” J. Biol. Chem. 261, 14628–14635 (1986).CrossRefPubMed
14.
go back to reference M. Bousquet, C. Gibrat, M. Ouellet, et al., “Cystamine metabolism and brain transport properties: clinical implications for neurodegenerative diseases,” J. Neurochem. 114, 1651–1658 (2010).CrossRefPubMed M. Bousquet, C. Gibrat, M. Ouellet, et al., “Cystamine metabolism and brain transport properties: clinical implications for neurodegenerative diseases,” J. Neurochem. 114, 1651–1658 (2010).CrossRefPubMed
15.
go back to reference J. C. Cizravi, Tiam YengTay, and Eng ChingPon, “Kinetics of azo-initiated 1-vinyl-2-pyrrolidone polymerizations at low conversions in aqueous media,” J. Appl. Polym. Sci. 75, 239–246 (2000).CrossRef J. C. Cizravi, Tiam YengTay, and Eng ChingPon, “Kinetics of azo-initiated 1-vinyl-2-pyrrolidone polymerizations at low conversions in aqueous media,” J. Appl. Polym. Sci. 75, 239–246 (2000).CrossRef
16.
go back to reference J. C. Cizravi, Tiam YengTay, and Eng ChingPon, “Kinetics of azo-initiated 1-vinyl-2-pyrrolidone polymerizations at low conversions in aqueous media,” J. Appl. Polym. Sci. 75, 239–246 (2000).CrossRef J. C. Cizravi, Tiam YengTay, and Eng ChingPon, “Kinetics of azo-initiated 1-vinyl-2-pyrrolidone polymerizations at low conversions in aqueous media,” J. Appl. Polym. Sci. 75, 239–246 (2000).CrossRef
17.
go back to reference E. Senogles and R. Thomas, “Polymerization kinetics of N-vinyl pyrrolidone,” J. Polym. Sci. Symp. 49, 203–210 (1975).CrossRef E. Senogles and R. Thomas, “Polymerization kinetics of N-vinyl pyrrolidone,” J. Polym. Sci. Symp. 49, 203–210 (1975).CrossRef
18.
go back to reference Y. Kaneko, K. Sakai, A. Kikuchi, et al., “Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels,” Macromolecules 28, 7717–7723 (1995).CrossRef Y. Kaneko, K. Sakai, A. Kikuchi, et al., “Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels,” Macromolecules 28, 7717–7723 (1995).CrossRef
19.
go back to reference T. Wu, A. Liu, T. Xie, and G. Yang, “Evaluation of ammonium terminated PMMA as compatibilizers for monomer casting polyamide6/clay nanocomposites,” J. Polym. Sci. Part B: Polym. Phys. 46, 1802—1810 (2008).CrossRef T. Wu, A. Liu, T. Xie, and G. Yang, “Evaluation of ammonium terminated PMMA as compatibilizers for monomer casting polyamide6/clay nanocomposites,” J. Polym. Sci. Part B: Polym. Phys. 46, 1802—1810 (2008).CrossRef
20.
go back to reference H. Peng, K. Rubsam, X. Huang, et al., “Reactive copolymers based on N-vinyl lactams with pyridyl disulfide side groups via RAFT polymerization and postmodification via thiol-disulfide exchange reaction,” Macromolecules 49, 7141–7154 (2016).CrossRef H. Peng, K. Rubsam, X. Huang, et al., “Reactive copolymers based on N-vinyl lactams with pyridyl disulfide side groups via RAFT polymerization and postmodification via thiol-disulfide exchange reaction,” Macromolecules 49, 7141–7154 (2016).CrossRef
21.
go back to reference T. Yoshimura, Y. Nakatani, K. Matsuoka, et al., “Single-alkyl and multi-alkyl chain-containing amphiphilic oligomers with several sugar side chains: solution properties and nanostructural analysis of aggregates by SANS,” Colloid Polym. Sci. 295, 793–802 (2017).CrossRef T. Yoshimura, Y. Nakatani, K. Matsuoka, et al., “Single-alkyl and multi-alkyl chain-containing amphiphilic oligomers with several sugar side chains: solution properties and nanostructural analysis of aggregates by SANS,” Colloid Polym. Sci. 295, 793–802 (2017).CrossRef
22.
go back to reference Fei Yan, Xing-Xin Cao, Hai-Xia Jiang, et al., “Novel water-soluble gossypol derivative increases chemotherapeutic sensitivity and promotes growth inhibition in colon cancer,” J. Med. Chem. 53, 5502–5510 (2010).CrossRefPubMed Fei Yan, Xing-Xin Cao, Hai-Xia Jiang, et al., “Novel water-soluble gossypol derivative increases chemotherapeutic sensitivity and promotes growth inhibition in colon cancer,” J. Med. Chem. 53, 5502–5510 (2010).CrossRefPubMed
23.
go back to reference Hoda Keshmiri-Neghab and Bahram Goliaei, “Therapeutic potential of gossypol: An overview,” Pharm. Biol. 52, 124–128 (2014).CrossRefPubMed Hoda Keshmiri-Neghab and Bahram Goliaei, “Therapeutic potential of gossypol: An overview,” Pharm. Biol. 52, 124–128 (2014).CrossRefPubMed
24.
go back to reference M. Berthelot, M. Helbert, C. Laurence, et al., “Hydrogen-bond basicity of nitriles,” J. Phys. Org. Chem. 6, 302–306 (1993).CrossRef M. Berthelot, M. Helbert, C. Laurence, et al., “Hydrogen-bond basicity of nitriles,” J. Phys. Org. Chem. 6, 302–306 (1993).CrossRef
25.
go back to reference K. Ulrich and U. Jakob, “The role of thiols in antioxidant systems,” Free Rad. Biol. Med. 140, 14–27 (2019).CrossRefPubMed K. Ulrich and U. Jakob, “The role of thiols in antioxidant systems,” Free Rad. Biol. Med. 140, 14–27 (2019).CrossRefPubMed
26.
go back to reference A. Aldea, A-M. Albu, A. Nicolescu, and V. Tecuceanu, “Kinetics of free radical polymerization of N-substituted amides and their structural implications,” Adv. Mater. Sci. Eng. 2016, 6430416 (2016).CrossRef A. Aldea, A-M. Albu, A. Nicolescu, and V. Tecuceanu, “Kinetics of free radical polymerization of N-substituted amides and their structural implications,” Adv. Mater. Sci. Eng. 2016, 6430416 (2016).CrossRef
27.
go back to reference A. N. Kuskov, A. L. Luss, I. A. Gritskova, et al., “Kinetics and mechanism of synthesis of carboxyl-containing N-vinyl-2-pyrrolidone telehelics for pharmacological use,” Polymers 13, 2569 (2021).CrossRefPubMedPubMedCentral A. N. Kuskov, A. L. Luss, I. A. Gritskova, et al., “Kinetics and mechanism of synthesis of carboxyl-containing N-vinyl-2-pyrrolidone telehelics for pharmacological use,” Polymers 13, 2569 (2021).CrossRefPubMedPubMedCentral
Metadata
Title
Kinetics of Synthesis of N-Vinyl-2-Pyrrolidone Oligomers with Amino End Groups for Stabilization of Aqueous Gossypol Dispersions
Authors
A. N. Kuskov
M. V. Motyakin
I. I. Levina
A. M. Nechaeva
A. A. Artyukhov
M. I. Shtilman
Ya. O. Mezhuev
Publication date
01-06-2023
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 2/2023
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421223020156

Other articles of this Issue 2/2023

Polymer Science, Series D 2/2023 Go to the issue

Premium Partners