Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2021

21-06-2021

Laboratory Investigation of Microbiologically Influenced Corrosion of X80 Pipeline Steel by Sulfate-Reducing Bacteria

Authors: Liying Cui, Zhiyong Liu, Peng Hu, Jiamin Shao

Published in: Journal of Materials Engineering and Performance | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The corrosion behavior of X80 pipeline steel induced by sulfate-reducing bacteria (SRB) was investigated. More corrosion pits were found in the SRB-inoculated medium than in the sterile medium. Carbon starvation tests were carried out in the SRB-inoculated culture media with 0, 10, and 100% organic carbon. Electrochemical results indicate that coupons immersed in the 0% and 10% carbon source media exhibited far more aggressive corrosion. FIB images show a loose outer corrosion layer of the coupons immersed in the 0% carbon source medium. Both metabolite and extracellular electron transfer worked as the corrosion mechanism in this study, while the predominant mechanism in the carbon source reduced media was extracellular electron transfer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Enning and J. Garrelfs, Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem, Appl. Environ. Microbiol., 2014, 80, p 1226–1236.CrossRef D. Enning and J. Garrelfs, Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem, Appl. Environ. Microbiol., 2014, 80, p 1226–1236.CrossRef
2.
go back to reference A.M. Olszewski, Avoidable MIC-Related Failure, J. Fail. Anal. Prev., 2017, 7, p 239–246.CrossRef A.M. Olszewski, Avoidable MIC-Related Failure, J. Fail. Anal. Prev., 2017, 7, p 239–246.CrossRef
3.
go back to reference A. Vigneron, I.M. Head and N. Tsesmetzis, Damage to Offshore Production Facilities by Corrosive Microbial Biofilms, Appl. Microbiol. Biotechnol., 2018, 102, p 2525–2533.CrossRef A. Vigneron, I.M. Head and N. Tsesmetzis, Damage to Offshore Production Facilities by Corrosive Microbial Biofilms, Appl. Microbiol. Biotechnol., 2018, 102, p 2525–2533.CrossRef
4.
go back to reference P.J. Antony, R.S. Raman, R. Raman and P. Kumar, Role of Microstructure on Corrosion of Duplex Stainless Steel in Presence of Bacterial Activity, Corros. Sci., 2010, 52, p 1404–1412.CrossRef P.J. Antony, R.S. Raman, R. Raman and P. Kumar, Role of Microstructure on Corrosion of Duplex Stainless Steel in Presence of Bacterial Activity, Corros. Sci., 2010, 52, p 1404–1412.CrossRef
5.
go back to reference B. Liu, Z. Li, X. Yang, C. Du and X. Li, Microbiologically Influenced Corrosion of X80 Pipeline Steel by Nitrate Reducing Bacteria in Artificial Beijing soil, Bioelectrochemistry, 2020, 135, p 107551.CrossRef B. Liu, Z. Li, X. Yang, C. Du and X. Li, Microbiologically Influenced Corrosion of X80 Pipeline Steel by Nitrate Reducing Bacteria in Artificial Beijing soil, Bioelectrochemistry, 2020, 135, p 107551.CrossRef
6.
go back to reference R. Javaherdashti, Microbiologically Influenced Corrosion (MIC), 2nd ed. Springer, Cham, 2017, p 29–79CrossRef R. Javaherdashti, Microbiologically Influenced Corrosion (MIC), 2nd ed. Springer, Cham, 2017, p 29–79CrossRef
7.
go back to reference Y. Wang, W. Zhao, H. Ai, X. Zhou and T. Zhang, Effects of Strain on the Corrosion Behaviour of X80 Steel, Corros. Sci., 2011, 53, p 2761–2766.CrossRef Y. Wang, W. Zhao, H. Ai, X. Zhou and T. Zhang, Effects of Strain on the Corrosion Behaviour of X80 Steel, Corros. Sci., 2011, 53, p 2761–2766.CrossRef
8.
go back to reference D. Xu and T. Gu, Carbon Source Starvation Triggered more Aggressive Corrosion Against Carbon Steel by the Desulfovibrio vulgaris Biofilm, Int. Biodeterior. Biodegrad., 2014, 91, p 74–81.CrossRef D. Xu and T. Gu, Carbon Source Starvation Triggered more Aggressive Corrosion Against Carbon Steel by the Desulfovibrio vulgaris Biofilm, Int. Biodeterior. Biodegrad., 2014, 91, p 74–81.CrossRef
9.
go back to reference G. Muyzer and A.J. Stams, The Ecology and Biotechnology of Sulphate-Reducing Bacteria, Nat. Rev. Microbiol., 2008, 6, p 441–454.CrossRef G. Muyzer and A.J. Stams, The Ecology and Biotechnology of Sulphate-Reducing Bacteria, Nat. Rev. Microbiol., 2008, 6, p 441–454.CrossRef
10.
go back to reference J. Wu, D. Zhang, P. Wang, Y. Cheng, S. Sun, Y. Sun and S. Chen, The Influence of Desulfovibrio sp. and Pseudoalteromonas sp. on the Corrosion of Q235 Carbon Steel in Natural Seawater, Corros. Sci., 2016, 112, p 552–562.CrossRef J. Wu, D. Zhang, P. Wang, Y. Cheng, S. Sun, Y. Sun and S. Chen, The Influence of Desulfovibrio sp. and Pseudoalteromonas sp. on the Corrosion of Q235 Carbon Steel in Natural Seawater, Corros. Sci., 2016, 112, p 552–562.CrossRef
11.
go back to reference W. Dou, J. Liu, W. Cai, D. Wang, R. Jia, S. Chen and T. Gu, Electrochemical Investigation of Increased Carbon Steel Corrosion via Extracellular Electron Transfer by a Sulfate Reducing Bacterium Under Carbon Source Starvation, Corros. Sci., 2019, 150, p 258–267.CrossRef W. Dou, J. Liu, W. Cai, D. Wang, R. Jia, S. Chen and T. Gu, Electrochemical Investigation of Increased Carbon Steel Corrosion via Extracellular Electron Transfer by a Sulfate Reducing Bacterium Under Carbon Source Starvation, Corros. Sci., 2019, 150, p 258–267.CrossRef
12.
go back to reference Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang and T. Gu, Anaerobic Microbiologically Influenced Corrosion Mechanisms Interpreted Using Bioenergetics and Bioelectrochemistry: A Review, J. Mater. Sci. Technol., 2018, 34, p 1713–1718.CrossRef Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang and T. Gu, Anaerobic Microbiologically Influenced Corrosion Mechanisms Interpreted Using Bioenergetics and Bioelectrochemistry: A Review, J. Mater. Sci. Technol., 2018, 34, p 1713–1718.CrossRef
13.
go back to reference T. Gu, R. Jia, T. Unsal and D. Xu, Toward a Better Understanding of Microbiologically Influenced Corrosion Caused by Sulfate Reducing Bacteria, J. Mater. Sci. Technol., 2019, 35, p 631–636.CrossRef T. Gu, R. Jia, T. Unsal and D. Xu, Toward a Better Understanding of Microbiologically Influenced Corrosion Caused by Sulfate Reducing Bacteria, J. Mater. Sci. Technol., 2019, 35, p 631–636.CrossRef
14.
go back to reference R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D. Xu and T. Gu, Effects of Biogenic H2S on the Microbiologically Influenced Corrosion of C1018 Carbon Steel by Sulfate Reducing Desulfovibrio vulgaris Biofilm, Corros. Sci., 2018, 130, p 1–11.CrossRef R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D. Xu and T. Gu, Effects of Biogenic H2S on the Microbiologically Influenced Corrosion of C1018 Carbon Steel by Sulfate Reducing Desulfovibrio vulgaris Biofilm, Corros. Sci., 2018, 130, p 1–11.CrossRef
15.
go back to reference H.T. Dinh, J. Kuever, M. Mußmann, A.W. Hassel, M. Stratmann and F. Widdel, Iron Corrosion by Novel Anaerobic Microorganisms, Nature, 2014, 427, p 829–832.CrossRef H.T. Dinh, J. Kuever, M. Mußmann, A.W. Hassel, M. Stratmann and F. Widdel, Iron Corrosion by Novel Anaerobic Microorganisms, Nature, 2014, 427, p 829–832.CrossRef
16.
go back to reference D.T. Hang, Microbiological Study of the Anaerobic Corrosion of Iron, in Trabajo de Grado para el titulo de Doctor en Ciencias Naturales, Universidad de Bremen, Alemania, 2003, p 56–71. D.T. Hang, Microbiological Study of the Anaerobic Corrosion of Iron, in Trabajo de Grado para el titulo de Doctor en Ciencias Naturales, Universidad de Bremen, Alemania, 2003, p 56–71.
17.
go back to reference T. Gu, K. Zhao, S. Nesic, A New Mechanistic Model for MIC Based on a Biocatalytic Cathodic Sulfate Reduction Theory, in Corrosion Conference and Expo, NACE, Atlanta, 2009, p 1–12. T. Gu, K. Zhao, S. Nesic, A New Mechanistic Model for MIC Based on a Biocatalytic Cathodic Sulfate Reduction Theory, in Corrosion Conference and Expo, NACE, Atlanta, 2009, p 1–12.
18.
go back to reference R. Jia, D. Yang, J. Xu, D. Xu and T. Gu, Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Pseudomonas aeruginosa Biofilm Under Organic Carbon Starvation, Corros. Sci., 2017, 127, p 1–9.CrossRef R. Jia, D. Yang, J. Xu, D. Xu and T. Gu, Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Pseudomonas aeruginosa Biofilm Under Organic Carbon Starvation, Corros. Sci., 2017, 127, p 1–9.CrossRef
19.
go back to reference L.Y. Cui, Z.Y. Liu, D.K. Xu, P. Hu, J.M. Shao, C.W. Du and X.G. Li, The Study of Microbiologically Influenced Corrosion of 2205 Duplex Stainless Steel Based on High-Resolution Characterization, Corros. Sci., 2020, 30, p 108842.CrossRef L.Y. Cui, Z.Y. Liu, D.K. Xu, P. Hu, J.M. Shao, C.W. Du and X.G. Li, The Study of Microbiologically Influenced Corrosion of 2205 Duplex Stainless Steel Based on High-Resolution Characterization, Corros. Sci., 2020, 30, p 108842.CrossRef
20.
go back to reference X. Yang, J. Shao, Z. Liu, D. Zhang, L. Cui, C. Du and X. Li, Stress-Assisted Microbiologically Influenced Corrosion Mechanism of 2205 Duplex Stainless Steel Caused by Sulfate-Reducing Bacteria, Corros. Sci., 2020, 20, p 108746.CrossRef X. Yang, J. Shao, Z. Liu, D. Zhang, L. Cui, C. Du and X. Li, Stress-Assisted Microbiologically Influenced Corrosion Mechanism of 2205 Duplex Stainless Steel Caused by Sulfate-Reducing Bacteria, Corros. Sci., 2020, 20, p 108746.CrossRef
21.
go back to reference Y. Chen, Q. Tang, J.M. Senko, G. Cheng, B.M.Z. Newby, H. Castaneda and L.K. Ju, Long-Term Survival of Desulfovibrio vulgaris on Carbon Steel and Associated Pitting Corrosion, Corros. Sci., 2015, 90, p 89–100.CrossRef Y. Chen, Q. Tang, J.M. Senko, G. Cheng, B.M.Z. Newby, H. Castaneda and L.K. Ju, Long-Term Survival of Desulfovibrio vulgaris on Carbon Steel and Associated Pitting Corrosion, Corros. Sci., 2015, 90, p 89–100.CrossRef
22.
go back to reference P. Zhang, D. Xu, Y. Li, K. Yang and T. Gu, Electron Mediators Accelerate the Microbiologically Influenced Corrosion of 304 Stainless Steel by the Desulfovibrio vulgaris Biofilm, Bioelectrochemistry, 2015, 101, p 14–21.CrossRef P. Zhang, D. Xu, Y. Li, K. Yang and T. Gu, Electron Mediators Accelerate the Microbiologically Influenced Corrosion of 304 Stainless Steel by the Desulfovibrio vulgaris Biofilm, Bioelectrochemistry, 2015, 101, p 14–21.CrossRef
23.
go back to reference H. Liu, T. Gu, G. Zhang, H. Liu and Y.F. Cheng, Corrosion of X80 Pipeline Steel Under Sulfate-Reducing Bacterium Biofilms in Simulated CO2-Saturated Oilfield Produced Water with Carbon Source Starvation, Corros. Sci., 2018, 136, p 47–59.CrossRef H. Liu, T. Gu, G. Zhang, H. Liu and Y.F. Cheng, Corrosion of X80 Pipeline Steel Under Sulfate-Reducing Bacterium Biofilms in Simulated CO2-Saturated Oilfield Produced Water with Carbon Source Starvation, Corros. Sci., 2018, 136, p 47–59.CrossRef
24.
go back to reference C.B. Walker, Z. He, Z.K. Yang, J.A. Ringbauer, Q. He, J. Zhou, G. Voordouw, J.D. Wall, A.P. Arkin, T.C. Hazen and S. Stolyar, The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris, J. Bacteriol., 2019, 191, p 5793–5801.CrossRef C.B. Walker, Z. He, Z.K. Yang, J.A. Ringbauer, Q. He, J. Zhou, G. Voordouw, J.D. Wall, A.P. Arkin, T.C. Hazen and S. Stolyar, The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris, J. Bacteriol., 2019, 191, p 5793–5801.CrossRef
25.
go back to reference G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen and D.R. Lovley, Extracellular Electron Transfer via Microbial Nanowires, Nature, 2005, 435, p 1098–1101.CrossRef G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen and D.R. Lovley, Extracellular Electron Transfer via Microbial Nanowires, Nature, 2005, 435, p 1098–1101.CrossRef
26.
go back to reference D. Xu, Y. Li, F. Song and T. Gu, Laboratory Investigation of Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Bacterium Bacillus Licheniformis, Corros. Sci., 2013, 77, p 385–390.CrossRef D. Xu, Y. Li, F. Song and T. Gu, Laboratory Investigation of Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Bacterium Bacillus Licheniformis, Corros. Sci., 2013, 77, p 385–390.CrossRef
27.
go back to reference L. Huang, Y. Huang, Y. Lou, H. Qian, D. Xu, L. Ma, C. Jiang and D. Zhang, Pyocyanin-Modifying Genes phzM and phzS Regulated the Extracellular Electron Transfer in Microbiologically-Influenced Corrosion of X80 Carbon Steel by Pseudomonas aeruginosa, Corros. Sci., 2020, 164, p 108355.CrossRef L. Huang, Y. Huang, Y. Lou, H. Qian, D. Xu, L. Ma, C. Jiang and D. Zhang, Pyocyanin-Modifying Genes phzM and phzS Regulated the Extracellular Electron Transfer in Microbiologically-Influenced Corrosion of X80 Carbon Steel by Pseudomonas aeruginosa, Corros. Sci., 2020, 164, p 108355.CrossRef
28.
go back to reference P. Marcus and J.M. Grimal, The Anodic Dissolution and Passivation of NiCrFe Alloys Studied by ESCA, Corros. Sci., 1992, 33, p 805–814.CrossRef P. Marcus and J.M. Grimal, The Anodic Dissolution and Passivation of NiCrFe Alloys Studied by ESCA, Corros. Sci., 1992, 33, p 805–814.CrossRef
29.
go back to reference M. Oku and K. Hirokawa, X-Ray Photoelectron Spectroscopy of Co3O4, Fe3O4, Mn3O4, and Related Compounds, J. Electron. Spectrosc. Relat. Phenom., 1976, 8, p 475–481.CrossRef M. Oku and K. Hirokawa, X-Ray Photoelectron Spectroscopy of Co3O4, Fe3O4, Mn3O4, and Related Compounds, J. Electron. Spectrosc. Relat. Phenom., 1976, 8, p 475–481.CrossRef
30.
go back to reference T. Wu, J. Xu, M. Yan, C. Sun, C. Yu and W. Ke, Synergistic Effect of Sulfate-Reducing Bacteria and Elastic Stress on Corrosion of X80 Steel in Soil Solution, Corros. Sci., 2014, 83, p 38–47.CrossRef T. Wu, J. Xu, M. Yan, C. Sun, C. Yu and W. Ke, Synergistic Effect of Sulfate-Reducing Bacteria and Elastic Stress on Corrosion of X80 Steel in Soil Solution, Corros. Sci., 2014, 83, p 38–47.CrossRef
31.
go back to reference J. Wang, B. Hou, J. Xiang, X. Chen, T. Gu and H. Liu, The Performance and Mechanism of Bifunctional Biocide Sodium Pyrithione Against Sulfate Reducing Bacteria in X80 Carbon Steel Corrosion, Corros. Sci., 2019, 150, p 296–308.CrossRef J. Wang, B. Hou, J. Xiang, X. Chen, T. Gu and H. Liu, The Performance and Mechanism of Bifunctional Biocide Sodium Pyrithione Against Sulfate Reducing Bacteria in X80 Carbon Steel Corrosion, Corros. Sci., 2019, 150, p 296–308.CrossRef
32.
go back to reference H. Konno, K. Sasaki, M. Tsunekawa, T. Takamori and R. Furuichi, X-Ray Photoelectron Spectroscopic Analysis of Surface Products on Pyrite Formed by Bacterial Leaching, Bunseki Kagaku, 1991, 40, p 609–616.CrossRef H. Konno, K. Sasaki, M. Tsunekawa, T. Takamori and R. Furuichi, X-Ray Photoelectron Spectroscopic Analysis of Surface Products on Pyrite Formed by Bacterial Leaching, Bunseki Kagaku, 1991, 40, p 609–616.CrossRef
33.
go back to reference V.I. Nefedov, Y.V. Salyn, G. Leonhardt and R. Scheibe, A Comparison of Different Spectrometers and Charge Corrections Used in X-Ray Photoelectron Spectroscopy, J. Electron. Spectrosc. Relat. Phenom., 1977, 10, p 121–124.CrossRef V.I. Nefedov, Y.V. Salyn, G. Leonhardt and R. Scheibe, A Comparison of Different Spectrometers and Charge Corrections Used in X-Ray Photoelectron Spectroscopy, J. Electron. Spectrosc. Relat. Phenom., 1977, 10, p 121–124.CrossRef
34.
go back to reference B.J. Tan, K.J. Klabunde and P.M. Sherwood, X-Ray Photoelectron Spectroscopy Studies of Solvated Metal Atom Dispersed Catalysts. Monometallic Iron and Bimetallic Iron-Cobalt Particles on Alumina, Chem. Mater., 1990, 2, p 186–191.CrossRef B.J. Tan, K.J. Klabunde and P.M. Sherwood, X-Ray Photoelectron Spectroscopy Studies of Solvated Metal Atom Dispersed Catalysts. Monometallic Iron and Bimetallic Iron-Cobalt Particles on Alumina, Chem. Mater., 1990, 2, p 186–191.CrossRef
35.
go back to reference B.R. Strohmeier and D.M. Hercules, Surface Spectroscopic Characterization of Manganese/Aluminum Oxide Catalysts, J. Phys. Chem., 1984, 88, p 4922–4929.CrossRef B.R. Strohmeier and D.M. Hercules, Surface Spectroscopic Characterization of Manganese/Aluminum Oxide Catalysts, J. Phys. Chem., 1984, 88, p 4922–4929.CrossRef
36.
go back to reference S. Karthe, R. Szargan and E. Suoninen, Oxidation of Pyrite Surfaces: A Photoelectron Spectroscopic Study, Appl. Surf. Sci., 1993, 72, p 157–170.CrossRef S. Karthe, R. Szargan and E. Suoninen, Oxidation of Pyrite Surfaces: A Photoelectron Spectroscopic Study, Appl. Surf. Sci., 1993, 72, p 157–170.CrossRef
37.
go back to reference J.M. Thomas, I. Adams, R.H. Williams and M. Barber, Valence Band Structures and Core-Electron Energy Levels in the Monochalcogenides of Gallium. Photoelectron SPECTROSCOPIC study, J. Chem. Soc. Faraday Trans., 1972, 2(68), p 755–764.CrossRef J.M. Thomas, I. Adams, R.H. Williams and M. Barber, Valence Band Structures and Core-Electron Energy Levels in the Monochalcogenides of Gallium. Photoelectron SPECTROSCOPIC study, J. Chem. Soc. Faraday Trans., 1972, 2(68), p 755–764.CrossRef
38.
go back to reference T. Wu, J. Xu, C. Sun, M. Yan, C. Yu and W. Ke, Microbiological Corrosion of Pipeline Steel Under Yield Stress in Soil Environment, Corros. Sci., 2014, 88, p 291–305.CrossRef T. Wu, J. Xu, C. Sun, M. Yan, C. Yu and W. Ke, Microbiological Corrosion of Pipeline Steel Under Yield Stress in Soil Environment, Corros. Sci., 2014, 88, p 291–305.CrossRef
39.
go back to reference M. Stern and A.L. Geary, Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves, J. Electrochem. Soc., 1957, 104, p 56–63.CrossRef M. Stern and A.L. Geary, Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves, J. Electrochem. Soc., 1957, 104, p 56–63.CrossRef
40.
go back to reference T. Wu, W.C. Ding, D.C. Zeng, C.F. Xu, M.C. Yan, J. Xu, C.K. Yu and C. Sun, Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis, J. Chin. Soc. Corros. Prot., 2014, 34, p 346–352. T. Wu, W.C. Ding, D.C. Zeng, C.F. Xu, M.C. Yan, J. Xu, C.K. Yu and C. Sun, Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis, J. Chin. Soc. Corros. Prot., 2014, 34, p 346–352.
41.
go back to reference V. Margaria, T. Tommasi, S. Pentassuglia, V. Agostino, A. Sacco, C. Armato, A. Chiodoni, T. Schilirò and M. Quaglio, Effects of pH Variations on Anodic Marine Consortia in a Dual Chamber Microbial Fuel Cell, Int. J. Hydrog. Energy, 2017, 42, p 1820–1829.CrossRef V. Margaria, T. Tommasi, S. Pentassuglia, V. Agostino, A. Sacco, C. Armato, A. Chiodoni, T. Schilirò and M. Quaglio, Effects of pH Variations on Anodic Marine Consortia in a Dual Chamber Microbial Fuel Cell, Int. J. Hydrog. Energy, 2017, 42, p 1820–1829.CrossRef
42.
go back to reference D. Enning, H. Venzlaff, J. Garrelfs, H.T. Dinh, V. Meyer, K. Mayrhofer, A.W. Hassel, M. Stratmann and F. Widdel, Marine Sulfate-Reducing Bacteria Cause Serious Corrosion of Iron Under Electroconductive Biogenic Mineral Crust, Environ. Microbiol., 2012, 14, p 1772–1787.CrossRef D. Enning, H. Venzlaff, J. Garrelfs, H.T. Dinh, V. Meyer, K. Mayrhofer, A.W. Hassel, M. Stratmann and F. Widdel, Marine Sulfate-Reducing Bacteria Cause Serious Corrosion of Iron Under Electroconductive Biogenic Mineral Crust, Environ. Microbiol., 2012, 14, p 1772–1787.CrossRef
44.
go back to reference L. Yu, M. Yan, J. Ma, M. Wu, Y. Shu, C. Sun, J. Xu and C. Yu, Sulfate Reducing Bacteria Corrosion of Pipeline Steel in Fe-Rich Red Soil, Acta Metall. Sin., 2017, 53, p 1568–1578. L. Yu, M. Yan, J. Ma, M. Wu, Y. Shu, C. Sun, J. Xu and C. Yu, Sulfate Reducing Bacteria Corrosion of Pipeline Steel in Fe-Rich Red Soil, Acta Metall. Sin., 2017, 53, p 1568–1578.
45.
go back to reference T. Gu, Theoretical Modeling of the Possibility of Acid Producing Bacteria Causing Fast Pitting Biocorrosion, J. Microb. Biochem. Technol., 2014, 6, p 68–74.CrossRef T. Gu, Theoretical Modeling of the Possibility of Acid Producing Bacteria Causing Fast Pitting Biocorrosion, J. Microb. Biochem. Technol., 2014, 6, p 68–74.CrossRef
Metadata
Title
Laboratory Investigation of Microbiologically Influenced Corrosion of X80 Pipeline Steel by Sulfate-Reducing Bacteria
Authors
Liying Cui
Zhiyong Liu
Peng Hu
Jiamin Shao
Publication date
21-06-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2021
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05974-z

Other articles of this Issue 10/2021

Journal of Materials Engineering and Performance 10/2021 Go to the issue

Premium Partners