Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

21.06.2021

Laboratory Investigation of Microbiologically Influenced Corrosion of X80 Pipeline Steel by Sulfate-Reducing Bacteria

verfasst von: Liying Cui, Zhiyong Liu, Peng Hu, Jiamin Shao

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The corrosion behavior of X80 pipeline steel induced by sulfate-reducing bacteria (SRB) was investigated. More corrosion pits were found in the SRB-inoculated medium than in the sterile medium. Carbon starvation tests were carried out in the SRB-inoculated culture media with 0, 10, and 100% organic carbon. Electrochemical results indicate that coupons immersed in the 0% and 10% carbon source media exhibited far more aggressive corrosion. FIB images show a loose outer corrosion layer of the coupons immersed in the 0% carbon source medium. Both metabolite and extracellular electron transfer worked as the corrosion mechanism in this study, while the predominant mechanism in the carbon source reduced media was extracellular electron transfer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Enning and J. Garrelfs, Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem, Appl. Environ. Microbiol., 2014, 80, p 1226–1236.CrossRef D. Enning and J. Garrelfs, Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem, Appl. Environ. Microbiol., 2014, 80, p 1226–1236.CrossRef
2.
Zurück zum Zitat A.M. Olszewski, Avoidable MIC-Related Failure, J. Fail. Anal. Prev., 2017, 7, p 239–246.CrossRef A.M. Olszewski, Avoidable MIC-Related Failure, J. Fail. Anal. Prev., 2017, 7, p 239–246.CrossRef
3.
Zurück zum Zitat A. Vigneron, I.M. Head and N. Tsesmetzis, Damage to Offshore Production Facilities by Corrosive Microbial Biofilms, Appl. Microbiol. Biotechnol., 2018, 102, p 2525–2533.CrossRef A. Vigneron, I.M. Head and N. Tsesmetzis, Damage to Offshore Production Facilities by Corrosive Microbial Biofilms, Appl. Microbiol. Biotechnol., 2018, 102, p 2525–2533.CrossRef
4.
Zurück zum Zitat P.J. Antony, R.S. Raman, R. Raman and P. Kumar, Role of Microstructure on Corrosion of Duplex Stainless Steel in Presence of Bacterial Activity, Corros. Sci., 2010, 52, p 1404–1412.CrossRef P.J. Antony, R.S. Raman, R. Raman and P. Kumar, Role of Microstructure on Corrosion of Duplex Stainless Steel in Presence of Bacterial Activity, Corros. Sci., 2010, 52, p 1404–1412.CrossRef
5.
Zurück zum Zitat B. Liu, Z. Li, X. Yang, C. Du and X. Li, Microbiologically Influenced Corrosion of X80 Pipeline Steel by Nitrate Reducing Bacteria in Artificial Beijing soil, Bioelectrochemistry, 2020, 135, p 107551.CrossRef B. Liu, Z. Li, X. Yang, C. Du and X. Li, Microbiologically Influenced Corrosion of X80 Pipeline Steel by Nitrate Reducing Bacteria in Artificial Beijing soil, Bioelectrochemistry, 2020, 135, p 107551.CrossRef
6.
Zurück zum Zitat R. Javaherdashti, Microbiologically Influenced Corrosion (MIC), 2nd ed. Springer, Cham, 2017, p 29–79CrossRef R. Javaherdashti, Microbiologically Influenced Corrosion (MIC), 2nd ed. Springer, Cham, 2017, p 29–79CrossRef
7.
Zurück zum Zitat Y. Wang, W. Zhao, H. Ai, X. Zhou and T. Zhang, Effects of Strain on the Corrosion Behaviour of X80 Steel, Corros. Sci., 2011, 53, p 2761–2766.CrossRef Y. Wang, W. Zhao, H. Ai, X. Zhou and T. Zhang, Effects of Strain on the Corrosion Behaviour of X80 Steel, Corros. Sci., 2011, 53, p 2761–2766.CrossRef
8.
Zurück zum Zitat D. Xu and T. Gu, Carbon Source Starvation Triggered more Aggressive Corrosion Against Carbon Steel by the Desulfovibrio vulgaris Biofilm, Int. Biodeterior. Biodegrad., 2014, 91, p 74–81.CrossRef D. Xu and T. Gu, Carbon Source Starvation Triggered more Aggressive Corrosion Against Carbon Steel by the Desulfovibrio vulgaris Biofilm, Int. Biodeterior. Biodegrad., 2014, 91, p 74–81.CrossRef
9.
Zurück zum Zitat G. Muyzer and A.J. Stams, The Ecology and Biotechnology of Sulphate-Reducing Bacteria, Nat. Rev. Microbiol., 2008, 6, p 441–454.CrossRef G. Muyzer and A.J. Stams, The Ecology and Biotechnology of Sulphate-Reducing Bacteria, Nat. Rev. Microbiol., 2008, 6, p 441–454.CrossRef
10.
Zurück zum Zitat J. Wu, D. Zhang, P. Wang, Y. Cheng, S. Sun, Y. Sun and S. Chen, The Influence of Desulfovibrio sp. and Pseudoalteromonas sp. on the Corrosion of Q235 Carbon Steel in Natural Seawater, Corros. Sci., 2016, 112, p 552–562.CrossRef J. Wu, D. Zhang, P. Wang, Y. Cheng, S. Sun, Y. Sun and S. Chen, The Influence of Desulfovibrio sp. and Pseudoalteromonas sp. on the Corrosion of Q235 Carbon Steel in Natural Seawater, Corros. Sci., 2016, 112, p 552–562.CrossRef
11.
Zurück zum Zitat W. Dou, J. Liu, W. Cai, D. Wang, R. Jia, S. Chen and T. Gu, Electrochemical Investigation of Increased Carbon Steel Corrosion via Extracellular Electron Transfer by a Sulfate Reducing Bacterium Under Carbon Source Starvation, Corros. Sci., 2019, 150, p 258–267.CrossRef W. Dou, J. Liu, W. Cai, D. Wang, R. Jia, S. Chen and T. Gu, Electrochemical Investigation of Increased Carbon Steel Corrosion via Extracellular Electron Transfer by a Sulfate Reducing Bacterium Under Carbon Source Starvation, Corros. Sci., 2019, 150, p 258–267.CrossRef
12.
Zurück zum Zitat Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang and T. Gu, Anaerobic Microbiologically Influenced Corrosion Mechanisms Interpreted Using Bioenergetics and Bioelectrochemistry: A Review, J. Mater. Sci. Technol., 2018, 34, p 1713–1718.CrossRef Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang and T. Gu, Anaerobic Microbiologically Influenced Corrosion Mechanisms Interpreted Using Bioenergetics and Bioelectrochemistry: A Review, J. Mater. Sci. Technol., 2018, 34, p 1713–1718.CrossRef
13.
Zurück zum Zitat T. Gu, R. Jia, T. Unsal and D. Xu, Toward a Better Understanding of Microbiologically Influenced Corrosion Caused by Sulfate Reducing Bacteria, J. Mater. Sci. Technol., 2019, 35, p 631–636.CrossRef T. Gu, R. Jia, T. Unsal and D. Xu, Toward a Better Understanding of Microbiologically Influenced Corrosion Caused by Sulfate Reducing Bacteria, J. Mater. Sci. Technol., 2019, 35, p 631–636.CrossRef
14.
Zurück zum Zitat R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D. Xu and T. Gu, Effects of Biogenic H2S on the Microbiologically Influenced Corrosion of C1018 Carbon Steel by Sulfate Reducing Desulfovibrio vulgaris Biofilm, Corros. Sci., 2018, 130, p 1–11.CrossRef R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D. Xu and T. Gu, Effects of Biogenic H2S on the Microbiologically Influenced Corrosion of C1018 Carbon Steel by Sulfate Reducing Desulfovibrio vulgaris Biofilm, Corros. Sci., 2018, 130, p 1–11.CrossRef
15.
Zurück zum Zitat H.T. Dinh, J. Kuever, M. Mußmann, A.W. Hassel, M. Stratmann and F. Widdel, Iron Corrosion by Novel Anaerobic Microorganisms, Nature, 2014, 427, p 829–832.CrossRef H.T. Dinh, J. Kuever, M. Mußmann, A.W. Hassel, M. Stratmann and F. Widdel, Iron Corrosion by Novel Anaerobic Microorganisms, Nature, 2014, 427, p 829–832.CrossRef
16.
Zurück zum Zitat D.T. Hang, Microbiological Study of the Anaerobic Corrosion of Iron, in Trabajo de Grado para el titulo de Doctor en Ciencias Naturales, Universidad de Bremen, Alemania, 2003, p 56–71. D.T. Hang, Microbiological Study of the Anaerobic Corrosion of Iron, in Trabajo de Grado para el titulo de Doctor en Ciencias Naturales, Universidad de Bremen, Alemania, 2003, p 56–71.
17.
Zurück zum Zitat T. Gu, K. Zhao, S. Nesic, A New Mechanistic Model for MIC Based on a Biocatalytic Cathodic Sulfate Reduction Theory, in Corrosion Conference and Expo, NACE, Atlanta, 2009, p 1–12. T. Gu, K. Zhao, S. Nesic, A New Mechanistic Model for MIC Based on a Biocatalytic Cathodic Sulfate Reduction Theory, in Corrosion Conference and Expo, NACE, Atlanta, 2009, p 1–12.
18.
Zurück zum Zitat R. Jia, D. Yang, J. Xu, D. Xu and T. Gu, Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Pseudomonas aeruginosa Biofilm Under Organic Carbon Starvation, Corros. Sci., 2017, 127, p 1–9.CrossRef R. Jia, D. Yang, J. Xu, D. Xu and T. Gu, Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Pseudomonas aeruginosa Biofilm Under Organic Carbon Starvation, Corros. Sci., 2017, 127, p 1–9.CrossRef
19.
Zurück zum Zitat L.Y. Cui, Z.Y. Liu, D.K. Xu, P. Hu, J.M. Shao, C.W. Du and X.G. Li, The Study of Microbiologically Influenced Corrosion of 2205 Duplex Stainless Steel Based on High-Resolution Characterization, Corros. Sci., 2020, 30, p 108842.CrossRef L.Y. Cui, Z.Y. Liu, D.K. Xu, P. Hu, J.M. Shao, C.W. Du and X.G. Li, The Study of Microbiologically Influenced Corrosion of 2205 Duplex Stainless Steel Based on High-Resolution Characterization, Corros. Sci., 2020, 30, p 108842.CrossRef
20.
Zurück zum Zitat X. Yang, J. Shao, Z. Liu, D. Zhang, L. Cui, C. Du and X. Li, Stress-Assisted Microbiologically Influenced Corrosion Mechanism of 2205 Duplex Stainless Steel Caused by Sulfate-Reducing Bacteria, Corros. Sci., 2020, 20, p 108746.CrossRef X. Yang, J. Shao, Z. Liu, D. Zhang, L. Cui, C. Du and X. Li, Stress-Assisted Microbiologically Influenced Corrosion Mechanism of 2205 Duplex Stainless Steel Caused by Sulfate-Reducing Bacteria, Corros. Sci., 2020, 20, p 108746.CrossRef
21.
Zurück zum Zitat Y. Chen, Q. Tang, J.M. Senko, G. Cheng, B.M.Z. Newby, H. Castaneda and L.K. Ju, Long-Term Survival of Desulfovibrio vulgaris on Carbon Steel and Associated Pitting Corrosion, Corros. Sci., 2015, 90, p 89–100.CrossRef Y. Chen, Q. Tang, J.M. Senko, G. Cheng, B.M.Z. Newby, H. Castaneda and L.K. Ju, Long-Term Survival of Desulfovibrio vulgaris on Carbon Steel and Associated Pitting Corrosion, Corros. Sci., 2015, 90, p 89–100.CrossRef
22.
Zurück zum Zitat P. Zhang, D. Xu, Y. Li, K. Yang and T. Gu, Electron Mediators Accelerate the Microbiologically Influenced Corrosion of 304 Stainless Steel by the Desulfovibrio vulgaris Biofilm, Bioelectrochemistry, 2015, 101, p 14–21.CrossRef P. Zhang, D. Xu, Y. Li, K. Yang and T. Gu, Electron Mediators Accelerate the Microbiologically Influenced Corrosion of 304 Stainless Steel by the Desulfovibrio vulgaris Biofilm, Bioelectrochemistry, 2015, 101, p 14–21.CrossRef
23.
Zurück zum Zitat H. Liu, T. Gu, G. Zhang, H. Liu and Y.F. Cheng, Corrosion of X80 Pipeline Steel Under Sulfate-Reducing Bacterium Biofilms in Simulated CO2-Saturated Oilfield Produced Water with Carbon Source Starvation, Corros. Sci., 2018, 136, p 47–59.CrossRef H. Liu, T. Gu, G. Zhang, H. Liu and Y.F. Cheng, Corrosion of X80 Pipeline Steel Under Sulfate-Reducing Bacterium Biofilms in Simulated CO2-Saturated Oilfield Produced Water with Carbon Source Starvation, Corros. Sci., 2018, 136, p 47–59.CrossRef
24.
Zurück zum Zitat C.B. Walker, Z. He, Z.K. Yang, J.A. Ringbauer, Q. He, J. Zhou, G. Voordouw, J.D. Wall, A.P. Arkin, T.C. Hazen and S. Stolyar, The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris, J. Bacteriol., 2019, 191, p 5793–5801.CrossRef C.B. Walker, Z. He, Z.K. Yang, J.A. Ringbauer, Q. He, J. Zhou, G. Voordouw, J.D. Wall, A.P. Arkin, T.C. Hazen and S. Stolyar, The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris, J. Bacteriol., 2019, 191, p 5793–5801.CrossRef
25.
Zurück zum Zitat G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen and D.R. Lovley, Extracellular Electron Transfer via Microbial Nanowires, Nature, 2005, 435, p 1098–1101.CrossRef G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen and D.R. Lovley, Extracellular Electron Transfer via Microbial Nanowires, Nature, 2005, 435, p 1098–1101.CrossRef
26.
Zurück zum Zitat D. Xu, Y. Li, F. Song and T. Gu, Laboratory Investigation of Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Bacterium Bacillus Licheniformis, Corros. Sci., 2013, 77, p 385–390.CrossRef D. Xu, Y. Li, F. Song and T. Gu, Laboratory Investigation of Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Bacterium Bacillus Licheniformis, Corros. Sci., 2013, 77, p 385–390.CrossRef
27.
Zurück zum Zitat L. Huang, Y. Huang, Y. Lou, H. Qian, D. Xu, L. Ma, C. Jiang and D. Zhang, Pyocyanin-Modifying Genes phzM and phzS Regulated the Extracellular Electron Transfer in Microbiologically-Influenced Corrosion of X80 Carbon Steel by Pseudomonas aeruginosa, Corros. Sci., 2020, 164, p 108355.CrossRef L. Huang, Y. Huang, Y. Lou, H. Qian, D. Xu, L. Ma, C. Jiang and D. Zhang, Pyocyanin-Modifying Genes phzM and phzS Regulated the Extracellular Electron Transfer in Microbiologically-Influenced Corrosion of X80 Carbon Steel by Pseudomonas aeruginosa, Corros. Sci., 2020, 164, p 108355.CrossRef
28.
Zurück zum Zitat P. Marcus and J.M. Grimal, The Anodic Dissolution and Passivation of NiCrFe Alloys Studied by ESCA, Corros. Sci., 1992, 33, p 805–814.CrossRef P. Marcus and J.M. Grimal, The Anodic Dissolution and Passivation of NiCrFe Alloys Studied by ESCA, Corros. Sci., 1992, 33, p 805–814.CrossRef
29.
Zurück zum Zitat M. Oku and K. Hirokawa, X-Ray Photoelectron Spectroscopy of Co3O4, Fe3O4, Mn3O4, and Related Compounds, J. Electron. Spectrosc. Relat. Phenom., 1976, 8, p 475–481.CrossRef M. Oku and K. Hirokawa, X-Ray Photoelectron Spectroscopy of Co3O4, Fe3O4, Mn3O4, and Related Compounds, J. Electron. Spectrosc. Relat. Phenom., 1976, 8, p 475–481.CrossRef
30.
Zurück zum Zitat T. Wu, J. Xu, M. Yan, C. Sun, C. Yu and W. Ke, Synergistic Effect of Sulfate-Reducing Bacteria and Elastic Stress on Corrosion of X80 Steel in Soil Solution, Corros. Sci., 2014, 83, p 38–47.CrossRef T. Wu, J. Xu, M. Yan, C. Sun, C. Yu and W. Ke, Synergistic Effect of Sulfate-Reducing Bacteria and Elastic Stress on Corrosion of X80 Steel in Soil Solution, Corros. Sci., 2014, 83, p 38–47.CrossRef
31.
Zurück zum Zitat J. Wang, B. Hou, J. Xiang, X. Chen, T. Gu and H. Liu, The Performance and Mechanism of Bifunctional Biocide Sodium Pyrithione Against Sulfate Reducing Bacteria in X80 Carbon Steel Corrosion, Corros. Sci., 2019, 150, p 296–308.CrossRef J. Wang, B. Hou, J. Xiang, X. Chen, T. Gu and H. Liu, The Performance and Mechanism of Bifunctional Biocide Sodium Pyrithione Against Sulfate Reducing Bacteria in X80 Carbon Steel Corrosion, Corros. Sci., 2019, 150, p 296–308.CrossRef
32.
Zurück zum Zitat H. Konno, K. Sasaki, M. Tsunekawa, T. Takamori and R. Furuichi, X-Ray Photoelectron Spectroscopic Analysis of Surface Products on Pyrite Formed by Bacterial Leaching, Bunseki Kagaku, 1991, 40, p 609–616.CrossRef H. Konno, K. Sasaki, M. Tsunekawa, T. Takamori and R. Furuichi, X-Ray Photoelectron Spectroscopic Analysis of Surface Products on Pyrite Formed by Bacterial Leaching, Bunseki Kagaku, 1991, 40, p 609–616.CrossRef
33.
Zurück zum Zitat V.I. Nefedov, Y.V. Salyn, G. Leonhardt and R. Scheibe, A Comparison of Different Spectrometers and Charge Corrections Used in X-Ray Photoelectron Spectroscopy, J. Electron. Spectrosc. Relat. Phenom., 1977, 10, p 121–124.CrossRef V.I. Nefedov, Y.V. Salyn, G. Leonhardt and R. Scheibe, A Comparison of Different Spectrometers and Charge Corrections Used in X-Ray Photoelectron Spectroscopy, J. Electron. Spectrosc. Relat. Phenom., 1977, 10, p 121–124.CrossRef
34.
Zurück zum Zitat B.J. Tan, K.J. Klabunde and P.M. Sherwood, X-Ray Photoelectron Spectroscopy Studies of Solvated Metal Atom Dispersed Catalysts. Monometallic Iron and Bimetallic Iron-Cobalt Particles on Alumina, Chem. Mater., 1990, 2, p 186–191.CrossRef B.J. Tan, K.J. Klabunde and P.M. Sherwood, X-Ray Photoelectron Spectroscopy Studies of Solvated Metal Atom Dispersed Catalysts. Monometallic Iron and Bimetallic Iron-Cobalt Particles on Alumina, Chem. Mater., 1990, 2, p 186–191.CrossRef
35.
Zurück zum Zitat B.R. Strohmeier and D.M. Hercules, Surface Spectroscopic Characterization of Manganese/Aluminum Oxide Catalysts, J. Phys. Chem., 1984, 88, p 4922–4929.CrossRef B.R. Strohmeier and D.M. Hercules, Surface Spectroscopic Characterization of Manganese/Aluminum Oxide Catalysts, J. Phys. Chem., 1984, 88, p 4922–4929.CrossRef
36.
Zurück zum Zitat S. Karthe, R. Szargan and E. Suoninen, Oxidation of Pyrite Surfaces: A Photoelectron Spectroscopic Study, Appl. Surf. Sci., 1993, 72, p 157–170.CrossRef S. Karthe, R. Szargan and E. Suoninen, Oxidation of Pyrite Surfaces: A Photoelectron Spectroscopic Study, Appl. Surf. Sci., 1993, 72, p 157–170.CrossRef
37.
Zurück zum Zitat J.M. Thomas, I. Adams, R.H. Williams and M. Barber, Valence Band Structures and Core-Electron Energy Levels in the Monochalcogenides of Gallium. Photoelectron SPECTROSCOPIC study, J. Chem. Soc. Faraday Trans., 1972, 2(68), p 755–764.CrossRef J.M. Thomas, I. Adams, R.H. Williams and M. Barber, Valence Band Structures and Core-Electron Energy Levels in the Monochalcogenides of Gallium. Photoelectron SPECTROSCOPIC study, J. Chem. Soc. Faraday Trans., 1972, 2(68), p 755–764.CrossRef
38.
Zurück zum Zitat T. Wu, J. Xu, C. Sun, M. Yan, C. Yu and W. Ke, Microbiological Corrosion of Pipeline Steel Under Yield Stress in Soil Environment, Corros. Sci., 2014, 88, p 291–305.CrossRef T. Wu, J. Xu, C. Sun, M. Yan, C. Yu and W. Ke, Microbiological Corrosion of Pipeline Steel Under Yield Stress in Soil Environment, Corros. Sci., 2014, 88, p 291–305.CrossRef
39.
Zurück zum Zitat M. Stern and A.L. Geary, Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves, J. Electrochem. Soc., 1957, 104, p 56–63.CrossRef M. Stern and A.L. Geary, Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves, J. Electrochem. Soc., 1957, 104, p 56–63.CrossRef
40.
Zurück zum Zitat T. Wu, W.C. Ding, D.C. Zeng, C.F. Xu, M.C. Yan, J. Xu, C.K. Yu and C. Sun, Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis, J. Chin. Soc. Corros. Prot., 2014, 34, p 346–352. T. Wu, W.C. Ding, D.C. Zeng, C.F. Xu, M.C. Yan, J. Xu, C.K. Yu and C. Sun, Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis, J. Chin. Soc. Corros. Prot., 2014, 34, p 346–352.
41.
Zurück zum Zitat V. Margaria, T. Tommasi, S. Pentassuglia, V. Agostino, A. Sacco, C. Armato, A. Chiodoni, T. Schilirò and M. Quaglio, Effects of pH Variations on Anodic Marine Consortia in a Dual Chamber Microbial Fuel Cell, Int. J. Hydrog. Energy, 2017, 42, p 1820–1829.CrossRef V. Margaria, T. Tommasi, S. Pentassuglia, V. Agostino, A. Sacco, C. Armato, A. Chiodoni, T. Schilirò and M. Quaglio, Effects of pH Variations on Anodic Marine Consortia in a Dual Chamber Microbial Fuel Cell, Int. J. Hydrog. Energy, 2017, 42, p 1820–1829.CrossRef
42.
Zurück zum Zitat D. Enning, H. Venzlaff, J. Garrelfs, H.T. Dinh, V. Meyer, K. Mayrhofer, A.W. Hassel, M. Stratmann and F. Widdel, Marine Sulfate-Reducing Bacteria Cause Serious Corrosion of Iron Under Electroconductive Biogenic Mineral Crust, Environ. Microbiol., 2012, 14, p 1772–1787.CrossRef D. Enning, H. Venzlaff, J. Garrelfs, H.T. Dinh, V. Meyer, K. Mayrhofer, A.W. Hassel, M. Stratmann and F. Widdel, Marine Sulfate-Reducing Bacteria Cause Serious Corrosion of Iron Under Electroconductive Biogenic Mineral Crust, Environ. Microbiol., 2012, 14, p 1772–1787.CrossRef
44.
Zurück zum Zitat L. Yu, M. Yan, J. Ma, M. Wu, Y. Shu, C. Sun, J. Xu and C. Yu, Sulfate Reducing Bacteria Corrosion of Pipeline Steel in Fe-Rich Red Soil, Acta Metall. Sin., 2017, 53, p 1568–1578. L. Yu, M. Yan, J. Ma, M. Wu, Y. Shu, C. Sun, J. Xu and C. Yu, Sulfate Reducing Bacteria Corrosion of Pipeline Steel in Fe-Rich Red Soil, Acta Metall. Sin., 2017, 53, p 1568–1578.
45.
Zurück zum Zitat T. Gu, Theoretical Modeling of the Possibility of Acid Producing Bacteria Causing Fast Pitting Biocorrosion, J. Microb. Biochem. Technol., 2014, 6, p 68–74.CrossRef T. Gu, Theoretical Modeling of the Possibility of Acid Producing Bacteria Causing Fast Pitting Biocorrosion, J. Microb. Biochem. Technol., 2014, 6, p 68–74.CrossRef
Metadaten
Titel
Laboratory Investigation of Microbiologically Influenced Corrosion of X80 Pipeline Steel by Sulfate-Reducing Bacteria
verfasst von
Liying Cui
Zhiyong Liu
Peng Hu
Jiamin Shao
Publikationsdatum
21.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05974-z

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.