Skip to main content
Top
Published in: Knowledge and Information Systems 2/2022

29-01-2022 | Regular Paper

Large-scale underwater fish recognition via deep adversarial learning

Authors: Zhixue Zhang, Xiujuan Du, Long Jin, Shuqiao Wang, Lijuan Wang, Xiuxiu Liu

Published in: Knowledge and Information Systems | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fish species recognition from images captured in underwater environments plays an essential role in many natural science studies, such as fish stock assessment, marine ecosystem analysis, and environmental research. However, the noisy nature of underwater images makes it difficult to train high-performance fish recognition models. This work presents a novel deep adversarial learning framework called AdvFish to train accurate deep neural networks fish recognition models from noisy large-scale underwater images. Unlike existing methods that rely on feature engineering or implicit machine learning techniques to mitigate the noise, AdvFish is a min–max bilevel adversarial optimization framework that trains the model on adversarially perturbed images via a proposed adaptive perturbation method. We show, on multiple benchmark datasets, that AdvFish holds a clear advantage over existing methods/models, especially on a noisy large-scale dataset. AdvFish is a generic learning framework that can help train better recognition models from extremely noisy images.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Boom BJ, Huang PX, Beyan C, Spampinato C, Palazzo S, He J, Beauxis-Aussalet E, Lin S-I, Chou H-M, Nadarajan G, et al. (2012) Long-term underwater camera surveillance for monitoring and analysis of fish populations. In: Workshop on visual observation and analysis of animal and insect behavior Boom BJ, Huang PX, Beyan C, Spampinato C, Palazzo S, He J, Beauxis-Aussalet E, Lin S-I, Chou H-M, Nadarajan G, et al. (2012) Long-term underwater camera surveillance for monitoring and analysis of fish populations. In: Workshop on visual observation and analysis of animal and insect behavior
2.
go back to reference Zhuang P, Wang Y, Qiao Y (2018) Wildfish: a large benchmark for fish recognition in the wild. In: ACM international conference on multimedia, pp 1301–1309 Zhuang P, Wang Y, Qiao Y (2018) Wildfish: a large benchmark for fish recognition in the wild. In: ACM international conference on multimedia, pp 1301–1309
3.
go back to reference Bicknell AW, Godley BJ, Sheehan EV, Votier SC, Witt MJ (2016) Camera technology for monitoring marine biodiversity and human impact. Front Ecol Environ 14(8):424–432CrossRef Bicknell AW, Godley BJ, Sheehan EV, Votier SC, Witt MJ (2016) Camera technology for monitoring marine biodiversity and human impact. Front Ecol Environ 14(8):424–432CrossRef
4.
go back to reference Fisher RB, Chen-Burger Y-H, Giordano D, Hardman L, Lin F-P (2016) Fish4Knowledge: collecting and analyzing massive coral reef fish video data, vol 104. Springer, BerlinCrossRef Fisher RB, Chen-Burger Y-H, Giordano D, Hardman L, Lin F-P (2016) Fish4Knowledge: collecting and analyzing massive coral reef fish video data, vol 104. Springer, BerlinCrossRef
5.
go back to reference Anantharajah K, Ge Z, McCool C, Denman S, Fookes C, Corke P, Tjondronegoro D, Sridharan S (2014) Local inter-session variability modelling for object classification. In: IEEE Winter conference on applications of computer vision, IEEE, pp 309–316 Anantharajah K, Ge Z, McCool C, Denman S, Fookes C, Corke P, Tjondronegoro D, Sridharan S (2014) Local inter-session variability modelling for object classification. In: IEEE Winter conference on applications of computer vision, IEEE, pp 309–316
6.
go back to reference Cutter G, Stierhoff K, Zeng J (2015) Automated detection of rockfish in unconstrained underwater videos using haar cascades and a new image dataset: labeled fishes in the wild. In: IEEE Winter conference on applications of computer vision, IEEE, pp 57–62 Cutter G, Stierhoff K, Zeng J (2015) Automated detection of rockfish in unconstrained underwater videos using haar cascades and a new image dataset: labeled fishes in the wild. In: IEEE Winter conference on applications of computer vision, IEEE, pp 57–62
7.
go back to reference Shiau Y-H, Lin F-P, Chen C-C (2012) Using sparse representation for fish recognition and verification in real world observation. In: Workshop on visual observation and analysis of animal and insect behavior, in conjunction with international conference on pattern recognition, Citeseer Shiau Y-H, Lin F-P, Chen C-C (2012) Using sparse representation for fish recognition and verification in real world observation. In: Workshop on visual observation and analysis of animal and insect behavior, in conjunction with international conference on pattern recognition, Citeseer
8.
go back to reference Joo D, Kwan Y-s, Song J, Pinho C, Hey J, Won Y-J (2013) Identification of cichlid fishes from Lake Malawi using computer vision. PLoS One 8(10):e77686CrossRef Joo D, Kwan Y-s, Song J, Pinho C, Hey J, Won Y-J (2013) Identification of cichlid fishes from Lake Malawi using computer vision. PLoS One 8(10):e77686CrossRef
9.
go back to reference Huang PX, Boom BJ, Fisher RB (2012) Underwater live fish recognition using a balance-guaranteed optimized tree. In: Asian conference on computer vision. Springer, pp 422–433 Huang PX, Boom BJ, Fisher RB (2012) Underwater live fish recognition using a balance-guaranteed optimized tree. In: Asian conference on computer vision. Springer, pp 422–433
10.
go back to reference Rodrigues MT, Freitas MH, Pádua FL, Gomes RM, Carrano EG (2015) Evaluating cluster detection algorithms and feature extraction techniques in automatic classification of fish species. Pattern Anal Appl 18(4):783–797MathSciNetCrossRef Rodrigues MT, Freitas MH, Pádua FL, Gomes RM, Carrano EG (2015) Evaluating cluster detection algorithms and feature extraction techniques in automatic classification of fish species. Pattern Anal Appl 18(4):783–797MathSciNetCrossRef
11.
go back to reference Deep BV, Dash R (2019) Underwater fish species recognition using deep learning techniques. In: International conference on signal processing and integrated networks, IEEE, pp 665–669 Deep BV, Dash R (2019) Underwater fish species recognition using deep learning techniques. In: International conference on signal processing and integrated networks, IEEE, pp 665–669
12.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105
13.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE Conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE Conference on computer vision and pattern recognition, pp 770–778
14.
go back to reference Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. Adv Neural Inf Process Syst 26:2553–2561 Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. Adv Neural Inf Process Syst 26:2553–2561
15.
go back to reference Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: IEEE International conference on computer vision, pp 2980–2988 Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: IEEE International conference on computer vision, pp 2980–2988
16.
go back to reference Xie Z, Jin L, Du X, Xiao X, Li H, Li S (2019) On generalized rmp scheme for redundant robot manipulators aided with dynamic neural networks and nonconvex bound constraints. IEEE Trans Ind Inf 15(9):5172–5181CrossRef Xie Z, Jin L, Du X, Xiao X, Li H, Li S (2019) On generalized rmp scheme for redundant robot manipulators aided with dynamic neural networks and nonconvex bound constraints. IEEE Trans Ind Inf 15(9):5172–5181CrossRef
17.
go back to reference Zhang J, Jin L, Cheng L (2020) Rnn for perturbed manipulability optimization of manipulators based on a distributed scheme: a game-theoretic perspective. IEEE Trans Neural Netw Learn Syst 31(12):5116–5126MathSciNetCrossRef Zhang J, Jin L, Cheng L (2020) Rnn for perturbed manipulability optimization of manipulators based on a distributed scheme: a game-theoretic perspective. IEEE Trans Neural Netw Learn Syst 31(12):5116–5126MathSciNetCrossRef
18.
go back to reference Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep neural networks with multitask learning. In: International conference on machine learning, pp 160–167 Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep neural networks with multitask learning. In: International conference on machine learning, pp 160–167
19.
go back to reference Deng L, Liu Y (2018) Deep learning in natural language processing. Springer, BerlinCrossRef Deng L, Liu Y (2018) Deep learning in natural language processing. Springer, BerlinCrossRef
20.
go back to reference LeCun Y, Bengio Y et al (1995) Convolutional networks for images, speech, and time series. Handbook Brain Theory Neural Networks 3361(10):1995 LeCun Y, Bengio Y et al (1995) Convolutional networks for images, speech, and time series. Handbook Brain Theory Neural Networks 3361(10):1995
21.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90CrossRef Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90CrossRef
22.
go back to reference Qin H, Li X, Liang J, Peng Y, Zhang C (2016) Deepfish: accurate underwater live fish recognition with a deep architecture. Neurocomputing 187:49–58CrossRef Qin H, Li X, Liang J, Peng Y, Zhang C (2016) Deepfish: accurate underwater live fish recognition with a deep architecture. Neurocomputing 187:49–58CrossRef
23.
go back to reference Rathi D, Jain S, Indu S (2017) Underwater fish species classification using convolutional neural network and deep learning. In: International conference on advances in pattern recognition, IEEE, pp 1–6 Rathi D, Jain S, Indu S (2017) Underwater fish species classification using convolutional neural network and deep learning. In: International conference on advances in pattern recognition, IEEE, pp 1–6
24.
go back to reference Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition, pp 248–255 Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition, pp 248–255
25.
go back to reference Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2018) Towards deep learning models resistant to adversarial attacks. In: International conference on learning representations Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2018) Towards deep learning models resistant to adversarial attacks. In: International conference on learning representations
26.
go back to reference Boom BJ, Huang PX, He J, Fisher RB (2012) Supporting ground-truth annotation of image datasets using clustering. In: IEEE International conference on pattern recognition, pp 1542–1545 Boom BJ, Huang PX, He J, Fisher RB (2012) Supporting ground-truth annotation of image datasets using clustering. In: IEEE International conference on pattern recognition, pp 1542–1545
29.
go back to reference Strachan NJC, Nesvadba P, Allen AR (1990) Fish species recognition by shape analysis of images. Pattern Recogn 23(5):539–544CrossRef Strachan NJC, Nesvadba P, Allen AR (1990) Fish species recognition by shape analysis of images. Pattern Recogn 23(5):539–544CrossRef
30.
go back to reference Nagashima Y, Ishimatsu T (1998) A morphological approach to fish discrimination. In: IAPR workshop on machine vision applications, pp 306–309 Nagashima Y, Ishimatsu T (1998) A morphological approach to fish discrimination. In: IAPR workshop on machine vision applications, pp 306–309
31.
go back to reference Larsen R, Olafsdottir H, Ersbøll BK (2009) Shape and texture based classification of fish species. In: Scandinavian conference on image analysis, Springer, pp 745–749 Larsen R, Olafsdottir H, Ersbøll BK (2009) Shape and texture based classification of fish species. In: Scandinavian conference on image analysis, Springer, pp 745–749
32.
go back to reference Nery M, Machado A, Campos MFM, Pádua FL, Carceroni R, Queiroz-Neto JP (2005) Determining the appropriate feature set for fish classification tasks. In: XVIII Brazilian symposium on computer graphics and image processing, IEEE, pp 173–180 Nery M, Machado A, Campos MFM, Pádua FL, Carceroni R, Queiroz-Neto JP (2005) Determining the appropriate feature set for fish classification tasks. In: XVIII Brazilian symposium on computer graphics and image processing, IEEE, pp 173–180
33.
go back to reference Spampinato C, Giordano D, Di Salvo R, Chen-Burger Y-HJ, Fisher RB, Nadarajan G (2010) Automatic fish classification for underwater species behavior understanding. In: ACM international workshop on analysis and retrieval of tracked events and motion in imagery streams, pp 45–50 Spampinato C, Giordano D, Di Salvo R, Chen-Burger Y-HJ, Fisher RB, Nadarajan G (2010) Automatic fish classification for underwater species behavior understanding. In: ACM international workshop on analysis and retrieval of tracked events and motion in imagery streams, pp 45–50
34.
go back to reference Ogunlana S, Olabode O, Oluwadare S, Iwasokun G (2015) Fish classification using support vector machine. African J Comput ICT 8(2):75–82 Ogunlana S, Olabode O, Oluwadare S, Iwasokun G (2015) Fish classification using support vector machine. African J Comput ICT 8(2):75–82
35.
go back to reference Rova A, Mori G, Dill LM (2007) One fish, two fish, butterfish, trumpeter: Recognizing fish in underwater video. In: International conference on machine vision applications, pp 404–407 Rova A, Mori G, Dill LM (2007) One fish, two fish, butterfish, trumpeter: Recognizing fish in underwater video. In: International conference on machine vision applications, pp 404–407
36.
go back to reference Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M (2020) Deep learning for generic object detection: A survey. Int J Comput Vision 128(2):261–318CrossRef Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M (2020) Deep learning for generic object detection: A survey. Int J Comput Vision 128(2):261–318CrossRef
37.
go back to reference He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: IEEE Conference on computer vision and pattern recognition, pp 1026–1034 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: IEEE Conference on computer vision and pattern recognition, pp 1026–1034
38.
go back to reference Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: European conference on computer vision, pp 499–515 Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: European conference on computer vision, pp 499–515
39.
go back to reference Wang F, Cheng J, Liu W, Liu H (2018) Additive margin softmax for face verification. IEEE Signal Process Lett 25(7):926–930CrossRef Wang F, Cheng J, Liu W, Liu H (2018) Additive margin softmax for face verification. IEEE Signal Process Lett 25(7):926–930CrossRef
40.
go back to reference Wang Y, Ma X, Chen Z, Luo Y, Yi J, Bailey J (2019) Symmetric cross entropy for robust learning with noisy labels. In: International conference on computer vision, pp 322–330 Wang Y, Ma X, Chen Z, Luo Y, Yi J, Bailey J (2019) Symmetric cross entropy for robust learning with noisy labels. In: International conference on computer vision, pp 322–330
41.
go back to reference Tian C, Fei L, Zheng W, Xu Y, Zuo W, Lin C-W (2020) Deep learning on image denoising: an overview. Neural Netw 131:251–275CrossRef Tian C, Fei L, Zheng W, Xu Y, Zuo W, Lin C-W (2020) Deep learning on image denoising: an overview. Neural Netw 131:251–275CrossRef
42.
go back to reference Liu W, Wen Y, Yu Z, Yang M (2016) Large-margin softmax loss for convolutional neural networks. Int Conf Mach Learn 2:7 Liu W, Wen Y, Yu Z, Yang M (2016) Large-margin softmax loss for convolutional neural networks. Int Conf Mach Learn 2:7
43.
go back to reference Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017) SphereFace: Deep hypersphere embedding for face recognition. In: IEEE Conference on computer vision and pattern recognition, pp 212–220 Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017) SphereFace: Deep hypersphere embedding for face recognition. In: IEEE Conference on computer vision and pattern recognition, pp 212–220
44.
go back to reference Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks. In: IEEE symposium on security and privacy, pp 39–57 Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks. In: IEEE symposium on security and privacy, pp 39–57
45.
go back to reference Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: International conference on learning representations Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: International conference on learning representations
46.
go back to reference Tsipras D, Santurkar S, Engstrom L, Turner A, Madry A (2019) Robustness may be at odds with accuracy. In: International conference on learning representations Tsipras D, Santurkar S, Engstrom L, Turner A, Madry A (2019) Robustness may be at odds with accuracy. In: International conference on learning representations
47.
go back to reference Hendrycks D, Dietterich T (2018) Benchmarking neural network robustness to common corruptions and perturbations. In: International conference on learning representations Hendrycks D, Dietterich T (2018) Benchmarking neural network robustness to common corruptions and perturbations. In: International conference on learning representations
48.
go back to reference Ilyas A, Santurkar S, Tsipras D, Engstrom L, Tran B, Madry A (2019) Adversarial examples are not bugs, they are features. In: Advances in neural information processing systems, pp 125–136 Ilyas A, Santurkar S, Tsipras D, Engstrom L, Tran B, Madry A (2019) Adversarial examples are not bugs, they are features. In: Advances in neural information processing systems, pp 125–136
49.
go back to reference Krizhevsky A, Hinton G, et al. (2012) Learning multiple layers of features from tiny images Krizhevsky A, Hinton G, et al. (2012) Learning multiple layers of features from tiny images
50.
go back to reference Wang Y, Ma X, Bailey J, Yi J, Zhou B, Gu Q (2019) On the convergence and robustness of adversarial training. Int Conf Mach Learn 1:2 Wang Y, Ma X, Bailey J, Yi J, Zhou B, Gu Q (2019) On the convergence and robustness of adversarial training. Int Conf Mach Learn 1:2
51.
go back to reference Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp 448–456 Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning, pp 448–456
52.
go back to reference Loshchilov I, Hutter F (2018) Decoupled weight decay regularization. In: International conference on learning representations Loshchilov I, Hutter F (2018) Decoupled weight decay regularization. In: International conference on learning representations
53.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH
54.
go back to reference Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: International conference on machine learning, pp 6105–6114 Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: International conference on machine learning, pp 6105–6114
55.
go back to reference Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: IEEE Conference on computer vision and pattern recognition, pp 4700–4708 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: IEEE Conference on computer vision and pattern recognition, pp 4700–4708
56.
go back to reference Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: IEEE Conference on computer vision and pattern recognition, pp 1492–1500 Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: IEEE Conference on computer vision and pattern recognition, pp 1492–1500
57.
go back to reference Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: IEEE Conference on computer vision and pattern recognition, pp 7132–7141 Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: IEEE Conference on computer vision and pattern recognition, pp 7132–7141
58.
go back to reference Loshchilov I, Hutter F. Sgdr: Stochastic gradient descent with warm restarts, International conference on learning representations Loshchilov I, Hutter F. Sgdr: Stochastic gradient descent with warm restarts, International conference on learning representations
59.
go back to reference Rosset S, Zhu J, Hastie TJ (2004) Margin maximizing loss functions. In: Advances in Neural information processing systems, pp 1237–1244 Rosset S, Zhu J, Hastie TJ (2004) Margin maximizing loss functions. In: Advances in Neural information processing systems, pp 1237–1244
60.
go back to reference Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):60CrossRef Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):60CrossRef
61.
go back to reference Maaten Lvd, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(Nov):2579–2605MATH Maaten Lvd, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(Nov):2579–2605MATH
62.
go back to reference Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: International conference on computer vision, pp 618–626 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: International conference on computer vision, pp 618–626
63.
go back to reference Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R. Intriguing properties of neural networks, International conference on learning representations Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R. Intriguing properties of neural networks, International conference on learning representations
64.
go back to reference Liu T, Tao D (2015) Classification with noisy labels by importance reweighting. IEEE Trans Pattern Anal Mach Intell 38(3):447–461CrossRef Liu T, Tao D (2015) Classification with noisy labels by importance reweighting. IEEE Trans Pattern Anal Mach Intell 38(3):447–461CrossRef
65.
go back to reference Xia X, Liu T, Han B, Wang N, Gong M, Liu H, Niu G, Tao D, Sugiyama M. Part-dependent label noise: Towards instance-dependent label noise. Adv Neural Inf Process Syst 33 Xia X, Liu T, Han B, Wang N, Gong M, Liu H, Niu G, Tao D, Sugiyama M. Part-dependent label noise: Towards instance-dependent label noise. Adv Neural Inf Process Syst 33
66.
go back to reference Cheng J, Liu T, Ramamohanarao K, Tao D (2020) Learning with bounded instance and label-dependent label noise. In: International conference on machine learning, PMLR, pp 1789–1799 Cheng J, Liu T, Ramamohanarao K, Tao D (2020) Learning with bounded instance and label-dependent label noise. In: International conference on machine learning, PMLR, pp 1789–1799
67.
go back to reference Wang Y, Liu W, Ma X, Bailey J, Zha H, Song L, Xia S-T (2018) Iterative learning with open-set noisy labels. In: IEEE conference on computer vision and pattern recognition, pp 8688–8696 Wang Y, Liu W, Ma X, Bailey J, Zha H, Song L, Xia S-T (2018) Iterative learning with open-set noisy labels. In: IEEE conference on computer vision and pattern recognition, pp 8688–8696
68.
go back to reference Han B, Yao Q, Yu X, Niu G, Xu M, Hu W, Tsang I, Sugiyama M. Co-teaching: robust training of deep neural networks with extremely noisy labels. NeurIPS Han B, Yao Q, Yu X, Niu G, Xu M, Hu W, Tsang I, Sugiyama M. Co-teaching: robust training of deep neural networks with extremely noisy labels. NeurIPS
69.
go back to reference Wei J, Liu H, Liu T, Niu G, Liu Y. Understanding (generalized) label smoothing whenlearning with noisy labels, arXiv preprint arXiv:2106.04149 Wei J, Liu H, Liu T, Niu G, Liu Y. Understanding (generalized) label smoothing whenlearning with noisy labels, arXiv preprint arXiv:​2106.​04149
70.
go back to reference Xu C, Liu T, Tao D, Xu C (2016) Local rademacher complexity for multi-label learning. IEEE Trans Image Process 25(3):1495–1507MathSciNetCrossRef Xu C, Liu T, Tao D, Xu C (2016) Local rademacher complexity for multi-label learning. IEEE Trans Image Process 25(3):1495–1507MathSciNetCrossRef
71.
go back to reference Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W (2016) Cnn-rnn: A unified framework for multi-label image classification. In: IEEE conference on computer vision and pattern recognition, pp 2285–2294 Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W (2016) Cnn-rnn: A unified framework for multi-label image classification. In: IEEE conference on computer vision and pattern recognition, pp 2285–2294
72.
go back to reference Lanchantin J, Wang T, Ordonez V, Qi Y (2021) General multi-label image classification with transformers. In: IEEE/CVF Conference on computer vision and pattern recognition, pp 16478–16488 Lanchantin J, Wang T, Ordonez V, Qi Y (2021) General multi-label image classification with transformers. In: IEEE/CVF Conference on computer vision and pattern recognition, pp 16478–16488
Metadata
Title
Large-scale underwater fish recognition via deep adversarial learning
Authors
Zhixue Zhang
Xiujuan Du
Long Jin
Shuqiao Wang
Lijuan Wang
Xiuxiu Liu
Publication date
29-01-2022
Publisher
Springer London
Published in
Knowledge and Information Systems / Issue 2/2022
Print ISSN: 0219-1377
Electronic ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-021-01643-8

Other articles of this Issue 2/2022

Knowledge and Information Systems 2/2022 Go to the issue

Premium Partner