Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

1. Laser-Assisted Scanning Probe Alloying Nanolithography (LASPAN)

Authors : Luohan Peng, Huiliang Zhang, Philip Hemmer, Hong Liang

Published in: Scanning Probe Microscopy in Nanoscience and Nanotechnology 3

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoscale science and technology demands novel approaches and new knowledge for further development. Nanofabrication has been widely employed in modern science and engineering. Probe-based nanolithography is a common technique to manufacture nanostructures. This research contributes fundamental understanding in surface science through development of a new methodology. A delicate hardware system was designed and constructed to realize the nanometer-scale direct writing. A simple and unique process, namely, laser-assisted scanning probe alloying nanolithography (LASPAN), to fabricate well-defined nanostructures has been developed. The LASPAN system, process, and the application in gold-silicon (Au-Si) binary system have been discussed in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
 ∗ Currently at Applied Optoelectronics, Inc.
 
2
 † Currently at Harvard University
 
Literature
1.
go back to reference R.C. Jaeger, Introduction to Microelectronic Fabrication, 2nd edn. Modular Series on Solid State Devices (Prentice Hall, Upper Saddle River, 2002) R.C. Jaeger, Introduction to Microelectronic Fabrication, 2nd edn. Modular Series on Solid State Devices (Prentice Hall, Upper Saddle River, 2002)
2.
go back to reference M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC Press, Boca Raton, 2002) M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC Press, Boca Raton, 2002)
3.
go back to reference N.M. Miskovsky, T.T. Tsong, Field evaporation of gold in single- and double-electrode systems. Phys. Rev. B 46(4), 2640 (1992) N.M. Miskovsky, T.T. Tsong, Field evaporation of gold in single- and double-electrode systems. Phys. Rev. B 46(4), 2640 (1992)
4.
go back to reference J.I. Pascual, et al., Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71(12), 1852 (1993) J.I. Pascual, et al., Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71(12), 1852 (1993)
5.
go back to reference G.S. Hsiao, R.M. Penner, J. Kingsley, Deposition of metal nanostructures onto Si(111) surfaces by field evaporation in the scanning tunneling microscope. Appl. Phys. Lett. 64(11), 1350–1352 (1994) G.S. Hsiao, R.M. Penner, J. Kingsley, Deposition of metal nanostructures onto Si(111) surfaces by field evaporation in the scanning tunneling microscope. Appl. Phys. Lett. 64(11), 1350–1352 (1994)
6.
go back to reference D.H. Huang, T. Nakayama, M. Aono, Platinum nanodot formation by atomic point contact with a scanning tunneling microscope platinum tip. Appl. Phys. Lett. 73(23), 3360–3362 (1998) D.H. Huang, T. Nakayama, M. Aono, Platinum nanodot formation by atomic point contact with a scanning tunneling microscope platinum tip. Appl. Phys. Lett. 73(23), 3360–3362 (1998)
7.
go back to reference D. Sundrani, S.B. Darling, S.J. Sibener, Hierarchical assembly and compliance of aligned nanoscale polymer cylinders in confinement. Langmuir 20(12), 5091–5099 (2004) D. Sundrani, S.B. Darling, S.J. Sibener, Hierarchical assembly and compliance of aligned nanoscale polymer cylinders in confinement. Langmuir 20(12), 5091–5099 (2004)
8.
go back to reference A. Laracuente, M.J. Bronikowski, A. Gallagher, Chemical vapor deposition of nanometer-size aluminum features on silicon surfaces using an STM tip. Appl. Surf. Sci. 107, 11–17 (1996) A. Laracuente, M.J. Bronikowski, A. Gallagher, Chemical vapor deposition of nanometer-size aluminum features on silicon surfaces using an STM tip. Appl. Surf. Sci. 107, 11–17 (1996)
9.
go back to reference G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986) G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986)
10.
go back to reference G. Binnig, H. Rohrer, Scanning tunneling microscopy. IBM J. Res. Dev. 44(1–2), 279–293 (2000) G. Binnig, H. Rohrer, Scanning tunneling microscopy. IBM J. Res. Dev. 44(1–2), 279–293 (2000)
11.
go back to reference G. Binnig, et al., Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57 (1982) G. Binnig, et al., Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57 (1982)
12.
go back to reference R.D. Piner, et al., “Dip-Pen” nanolithography. Science 283(5402), 661–663 (1999) R.D. Piner, et al., “Dip-Pen” nanolithography. Science 283(5402), 661–663 (1999)
13.
go back to reference S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258): 85–87 (1996) S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258): 85–87 (1996)
14.
go back to reference J.A. Dagata, et al., Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl. Phys. Lett. 56(20), 2001–2003 (1990) J.A. Dagata, et al., Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl. Phys. Lett. 56(20), 2001–2003 (1990)
15.
go back to reference H.C. Day, D.R. Allee, Selective area oxidation of silicon with a scanning force microscope. Appl. Phys. Lett. 62(21), 2691–2693 (1993) H.C. Day, D.R. Allee, Selective area oxidation of silicon with a scanning force microscope. Appl. Phys. Lett. 62(21), 2691–2693 (1993)
16.
go back to reference K. Salaita, et al., Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small 1(10), 940–945 (2005) K. Salaita, et al., Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small 1(10), 940–945 (2005)
17.
go back to reference D. Bullen, et al., Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl. Phys. Lett. 84(5), 789–791 (2004) D. Bullen, et al., Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl. Phys. Lett. 84(5), 789–791 (2004)
18.
go back to reference J. Haaheim, et al., Dip pen nanolithography (DPN): process and instrument performance with NanoInk’s Nscriptor system. Ultramicroscopy 103(2), 117–132 (2005) J. Haaheim, et al., Dip pen nanolithography (DPN): process and instrument performance with NanoInk’s Nscriptor system. Ultramicroscopy 103(2), 117–132 (2005)
19.
go back to reference Hong, S., J. Zhu, C.A. Mirkin, Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science 286(5439), 523–525 (1999) Hong, S., J. Zhu, C.A. Mirkin, Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science 286(5439), 523–525 (1999)
20.
go back to reference S. Hong, C.A. Mirkin, A nanoplotter with both parallel and serial writing capabilities. Science 288(5472), 1808–1811 (2000) S. Hong, C.A. Mirkin, A nanoplotter with both parallel and serial writing capabilities. Science 288(5472), 1808–1811 (2000)
21.
go back to reference S.W. Lee, et al., Nanostructured polyelectrolyte multilayer organic thin films generated via parallel dip-pen nanolithography. Adv. Mater. 17(22),2749–2753 (2005) S.W. Lee, et al., Nanostructured polyelectrolyte multilayer organic thin films generated via parallel dip-pen nanolithography. Adv. Mater. 17(22),2749–2753 (2005)
22.
go back to reference L. Fu, et al., Nanopatterning of “Hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett. 3(6), 757–760 (2003) L. Fu, et al., Nanopatterning of “Hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett. 3(6), 757–760 (2003)
23.
go back to reference J.-M. Nam, et al., Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem. Int. Ed. 43(10), 1246–1249 (2004) J.-M. Nam, et al., Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem. Int. Ed. 43(10), 1246–1249 (2004)
24.
go back to reference J. Jang, G.C. Schatz, M.A. Ratner, Capillary force on a nanoscale tip in dip-pen nanolithography. Phys. Rev. Lett. 90(15), 156104 (2003) J. Jang, G.C. Schatz, M.A. Ratner, Capillary force on a nanoscale tip in dip-pen nanolithography. Phys. Rev. Lett. 90(15), 156104 (2003)
25.
go back to reference P.E. Sheehan, L.J. Whitman, Thiol diffusion and the role of humidity in “Dip Pen Nanolithography”. Phys. Rev. Lett. 88(15), 156104 (2002) P.E. Sheehan, L.J. Whitman, Thiol diffusion and the role of humidity in “Dip Pen Nanolithography”. Phys. Rev. Lett. 88(15), 156104 (2002)
26.
go back to reference C.R. Lowe, Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr. Opin. Struct. Biol. 10(4), 428–434 (2000) C.R. Lowe, Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr. Opin. Struct. Biol. 10(4), 428–434 (2000)
27.
go back to reference M.H. Hong, et al., Laser assisted surface nanopatterning. Sensors Actuators A: Phys. 108(1–3), 69–74 (2003) M.H. Hong, et al., Laser assisted surface nanopatterning. Sensors Actuators A: Phys. 108(1–3), 69–74 (2003)
28.
go back to reference V. Grigalinas, et al., Laser pulse assisted nanoimprint lithography. Thin Solid Films 453–454, 13–15 (2004) V. Grigalinas, et al., Laser pulse assisted nanoimprint lithography. Thin Solid Films 453–454, 13–15 (2004)
29.
go back to reference A.A. Gorbunov, W. Pompe, Thin film nanoprocessing by laser/STM combination. Physica Status Solidi (a) 145(2), 333–338 (1994) A.A. Gorbunov, W. Pompe, Thin film nanoprocessing by laser/STM combination. Physica Status Solidi (a) 145(2), 333–338 (1994)
30.
go back to reference S.M. Huang, et al., Pulsed laser-assisted surface structuring with optical near-field enhanced effects. J. Appl. Phys. 92(5), 2495–2500 (2002) S.M. Huang, et al., Pulsed laser-assisted surface structuring with optical near-field enhanced effects. J. Appl. Phys. 92(5), 2495–2500 (2002)
31.
go back to reference M. Tortonese, Cantilevers and tips for atomic force microscopy. Eng. Med. Biol. Mag., IEEE 16(2), 28–33 (1997) M. Tortonese, Cantilevers and tips for atomic force microscopy. Eng. Med. Biol. Mag., IEEE 16(2), 28–33 (1997)
32.
go back to reference B. Bhushan, Scanning probe Microscopy in Nanoscience and Nanotechnology, vol 14. Nanoscience and Technology (Springer, Berlin, 2010) B. Bhushan, Scanning probe Microscopy in Nanoscience and Nanotechnology, vol 14. Nanoscience and Technology (Springer, Berlin, 2010)
Metadata
Title
Laser-Assisted Scanning Probe Alloying Nanolithography (LASPAN)
Authors
Luohan Peng
Huiliang Zhang
Philip Hemmer
Hong Liang
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-25414-7_1

Premium Partners