Skip to main content
Erschienen in:
Buchtitelbild

2013 | OriginalPaper | Buchkapitel

1. Laser-Assisted Scanning Probe Alloying Nanolithography (LASPAN)

verfasst von : Luohan Peng, Huiliang Zhang, Philip Hemmer, Hong Liang

Erschienen in: Scanning Probe Microscopy in Nanoscience and Nanotechnology 3

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanoscale science and technology demands novel approaches and new knowledge for further development. Nanofabrication has been widely employed in modern science and engineering. Probe-based nanolithography is a common technique to manufacture nanostructures. This research contributes fundamental understanding in surface science through development of a new methodology. A delicate hardware system was designed and constructed to realize the nanometer-scale direct writing. A simple and unique process, namely, laser-assisted scanning probe alloying nanolithography (LASPAN), to fabricate well-defined nanostructures has been developed. The LASPAN system, process, and the application in gold-silicon (Au-Si) binary system have been discussed in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
 ∗ Currently at Applied Optoelectronics, Inc.
 
2
 † Currently at Harvard University
 
Literatur
1.
Zurück zum Zitat R.C. Jaeger, Introduction to Microelectronic Fabrication, 2nd edn. Modular Series on Solid State Devices (Prentice Hall, Upper Saddle River, 2002) R.C. Jaeger, Introduction to Microelectronic Fabrication, 2nd edn. Modular Series on Solid State Devices (Prentice Hall, Upper Saddle River, 2002)
2.
Zurück zum Zitat M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC Press, Boca Raton, 2002) M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC Press, Boca Raton, 2002)
3.
Zurück zum Zitat N.M. Miskovsky, T.T. Tsong, Field evaporation of gold in single- and double-electrode systems. Phys. Rev. B 46(4), 2640 (1992) N.M. Miskovsky, T.T. Tsong, Field evaporation of gold in single- and double-electrode systems. Phys. Rev. B 46(4), 2640 (1992)
4.
Zurück zum Zitat J.I. Pascual, et al., Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71(12), 1852 (1993) J.I. Pascual, et al., Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71(12), 1852 (1993)
5.
Zurück zum Zitat G.S. Hsiao, R.M. Penner, J. Kingsley, Deposition of metal nanostructures onto Si(111) surfaces by field evaporation in the scanning tunneling microscope. Appl. Phys. Lett. 64(11), 1350–1352 (1994) G.S. Hsiao, R.M. Penner, J. Kingsley, Deposition of metal nanostructures onto Si(111) surfaces by field evaporation in the scanning tunneling microscope. Appl. Phys. Lett. 64(11), 1350–1352 (1994)
6.
Zurück zum Zitat D.H. Huang, T. Nakayama, M. Aono, Platinum nanodot formation by atomic point contact with a scanning tunneling microscope platinum tip. Appl. Phys. Lett. 73(23), 3360–3362 (1998) D.H. Huang, T. Nakayama, M. Aono, Platinum nanodot formation by atomic point contact with a scanning tunneling microscope platinum tip. Appl. Phys. Lett. 73(23), 3360–3362 (1998)
7.
Zurück zum Zitat D. Sundrani, S.B. Darling, S.J. Sibener, Hierarchical assembly and compliance of aligned nanoscale polymer cylinders in confinement. Langmuir 20(12), 5091–5099 (2004) D. Sundrani, S.B. Darling, S.J. Sibener, Hierarchical assembly and compliance of aligned nanoscale polymer cylinders in confinement. Langmuir 20(12), 5091–5099 (2004)
8.
Zurück zum Zitat A. Laracuente, M.J. Bronikowski, A. Gallagher, Chemical vapor deposition of nanometer-size aluminum features on silicon surfaces using an STM tip. Appl. Surf. Sci. 107, 11–17 (1996) A. Laracuente, M.J. Bronikowski, A. Gallagher, Chemical vapor deposition of nanometer-size aluminum features on silicon surfaces using an STM tip. Appl. Surf. Sci. 107, 11–17 (1996)
9.
Zurück zum Zitat G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986) G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986)
10.
Zurück zum Zitat G. Binnig, H. Rohrer, Scanning tunneling microscopy. IBM J. Res. Dev. 44(1–2), 279–293 (2000) G. Binnig, H. Rohrer, Scanning tunneling microscopy. IBM J. Res. Dev. 44(1–2), 279–293 (2000)
11.
Zurück zum Zitat G. Binnig, et al., Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57 (1982) G. Binnig, et al., Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57 (1982)
12.
Zurück zum Zitat R.D. Piner, et al., “Dip-Pen” nanolithography. Science 283(5402), 661–663 (1999) R.D. Piner, et al., “Dip-Pen” nanolithography. Science 283(5402), 661–663 (1999)
13.
Zurück zum Zitat S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258): 85–87 (1996) S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258): 85–87 (1996)
14.
Zurück zum Zitat J.A. Dagata, et al., Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl. Phys. Lett. 56(20), 2001–2003 (1990) J.A. Dagata, et al., Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl. Phys. Lett. 56(20), 2001–2003 (1990)
15.
Zurück zum Zitat H.C. Day, D.R. Allee, Selective area oxidation of silicon with a scanning force microscope. Appl. Phys. Lett. 62(21), 2691–2693 (1993) H.C. Day, D.R. Allee, Selective area oxidation of silicon with a scanning force microscope. Appl. Phys. Lett. 62(21), 2691–2693 (1993)
16.
Zurück zum Zitat K. Salaita, et al., Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small 1(10), 940–945 (2005) K. Salaita, et al., Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small 1(10), 940–945 (2005)
17.
Zurück zum Zitat D. Bullen, et al., Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl. Phys. Lett. 84(5), 789–791 (2004) D. Bullen, et al., Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl. Phys. Lett. 84(5), 789–791 (2004)
18.
Zurück zum Zitat J. Haaheim, et al., Dip pen nanolithography (DPN): process and instrument performance with NanoInk’s Nscriptor system. Ultramicroscopy 103(2), 117–132 (2005) J. Haaheim, et al., Dip pen nanolithography (DPN): process and instrument performance with NanoInk’s Nscriptor system. Ultramicroscopy 103(2), 117–132 (2005)
19.
Zurück zum Zitat Hong, S., J. Zhu, C.A. Mirkin, Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science 286(5439), 523–525 (1999) Hong, S., J. Zhu, C.A. Mirkin, Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science 286(5439), 523–525 (1999)
20.
Zurück zum Zitat S. Hong, C.A. Mirkin, A nanoplotter with both parallel and serial writing capabilities. Science 288(5472), 1808–1811 (2000) S. Hong, C.A. Mirkin, A nanoplotter with both parallel and serial writing capabilities. Science 288(5472), 1808–1811 (2000)
21.
Zurück zum Zitat S.W. Lee, et al., Nanostructured polyelectrolyte multilayer organic thin films generated via parallel dip-pen nanolithography. Adv. Mater. 17(22),2749–2753 (2005) S.W. Lee, et al., Nanostructured polyelectrolyte multilayer organic thin films generated via parallel dip-pen nanolithography. Adv. Mater. 17(22),2749–2753 (2005)
22.
Zurück zum Zitat L. Fu, et al., Nanopatterning of “Hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett. 3(6), 757–760 (2003) L. Fu, et al., Nanopatterning of “Hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett. 3(6), 757–760 (2003)
23.
Zurück zum Zitat J.-M. Nam, et al., Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem. Int. Ed. 43(10), 1246–1249 (2004) J.-M. Nam, et al., Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem. Int. Ed. 43(10), 1246–1249 (2004)
24.
Zurück zum Zitat J. Jang, G.C. Schatz, M.A. Ratner, Capillary force on a nanoscale tip in dip-pen nanolithography. Phys. Rev. Lett. 90(15), 156104 (2003) J. Jang, G.C. Schatz, M.A. Ratner, Capillary force on a nanoscale tip in dip-pen nanolithography. Phys. Rev. Lett. 90(15), 156104 (2003)
25.
Zurück zum Zitat P.E. Sheehan, L.J. Whitman, Thiol diffusion and the role of humidity in “Dip Pen Nanolithography”. Phys. Rev. Lett. 88(15), 156104 (2002) P.E. Sheehan, L.J. Whitman, Thiol diffusion and the role of humidity in “Dip Pen Nanolithography”. Phys. Rev. Lett. 88(15), 156104 (2002)
26.
Zurück zum Zitat C.R. Lowe, Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr. Opin. Struct. Biol. 10(4), 428–434 (2000) C.R. Lowe, Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr. Opin. Struct. Biol. 10(4), 428–434 (2000)
27.
Zurück zum Zitat M.H. Hong, et al., Laser assisted surface nanopatterning. Sensors Actuators A: Phys. 108(1–3), 69–74 (2003) M.H. Hong, et al., Laser assisted surface nanopatterning. Sensors Actuators A: Phys. 108(1–3), 69–74 (2003)
28.
Zurück zum Zitat V. Grigalinas, et al., Laser pulse assisted nanoimprint lithography. Thin Solid Films 453–454, 13–15 (2004) V. Grigalinas, et al., Laser pulse assisted nanoimprint lithography. Thin Solid Films 453–454, 13–15 (2004)
29.
Zurück zum Zitat A.A. Gorbunov, W. Pompe, Thin film nanoprocessing by laser/STM combination. Physica Status Solidi (a) 145(2), 333–338 (1994) A.A. Gorbunov, W. Pompe, Thin film nanoprocessing by laser/STM combination. Physica Status Solidi (a) 145(2), 333–338 (1994)
30.
Zurück zum Zitat S.M. Huang, et al., Pulsed laser-assisted surface structuring with optical near-field enhanced effects. J. Appl. Phys. 92(5), 2495–2500 (2002) S.M. Huang, et al., Pulsed laser-assisted surface structuring with optical near-field enhanced effects. J. Appl. Phys. 92(5), 2495–2500 (2002)
31.
Zurück zum Zitat M. Tortonese, Cantilevers and tips for atomic force microscopy. Eng. Med. Biol. Mag., IEEE 16(2), 28–33 (1997) M. Tortonese, Cantilevers and tips for atomic force microscopy. Eng. Med. Biol. Mag., IEEE 16(2), 28–33 (1997)
32.
Zurück zum Zitat B. Bhushan, Scanning probe Microscopy in Nanoscience and Nanotechnology, vol 14. Nanoscience and Technology (Springer, Berlin, 2010) B. Bhushan, Scanning probe Microscopy in Nanoscience and Nanotechnology, vol 14. Nanoscience and Technology (Springer, Berlin, 2010)
Metadaten
Titel
Laser-Assisted Scanning Probe Alloying Nanolithography (LASPAN)
verfasst von
Luohan Peng
Huiliang Zhang
Philip Hemmer
Hong Liang
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-25414-7_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.