Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 11/2017

11-10-2017

Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid

Authors: M. A. Hussein, A. Madhan Kumar, Bekir S. Yilbas, N. Al-Aqeeli

Published in: Journal of Materials Engineering and Performance | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Probst, U. Gbureck, and R. Thull, Binary Nitride and Oxynitride PVD Coatings on Titanium for Biomedical Applications, Surf. Coat. Technol., 2001, 2(148), p 226–233CrossRef J. Probst, U. Gbureck, and R. Thull, Binary Nitride and Oxynitride PVD Coatings on Titanium for Biomedical Applications, Surf. Coat. Technol., 2001, 2(148), p 226–233CrossRef
2.
go back to reference A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta Biomater., 2012, 8(5), p 1661–1669CrossRef A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta Biomater., 2012, 8(5), p 1661–1669CrossRef
3.
go back to reference M.O. Alam and A.S.M.A. Haseeb, Response of Ti-6Al-4V and Ti-24Al-11Nb Alloys to Dry Sliding Wear Against Hardened Steel, Tribol. Int., 2002, 35(6), p 357–362CrossRef M.O. Alam and A.S.M.A. Haseeb, Response of Ti-6Al-4V and Ti-24Al-11Nb Alloys to Dry Sliding Wear Against Hardened Steel, Tribol. Int., 2002, 35(6), p 357–362CrossRef
4.
go back to reference M.A. Hussein, A.S. Mohammed, and N. Al-Aqeeli, Wear Characteristics of Metallic Biomaterials: A Review, Materials, 2015, 8(5), p 2749–2768CrossRef M.A. Hussein, A.S. Mohammed, and N. Al-Aqeeli, Wear Characteristics of Metallic Biomaterials: A Review, Materials, 2015, 8(5), p 2749–2768CrossRef
5.
go back to reference P.G. Liang, A. Ferguson, and E.S. Hodge, Tissue Reaction in Rabbit Muscle Exposed to Metallic Implants, J. Biomed. Mater. Res., 1967, 1(1), p 135–149CrossRef P.G. Liang, A. Ferguson, and E.S. Hodge, Tissue Reaction in Rabbit Muscle Exposed to Metallic Implants, J. Biomed. Mater. Res., 1967, 1(1), p 135–149CrossRef
6.
go back to reference M.A. Khan, R.L. Williams, and D.F. Williams, In-vitro Corrosion and Wear of Titanium Alloys in the Biological Environment, Biomaterials, 1996, 17(22), p 2117–2126CrossRef M.A. Khan, R.L. Williams, and D.F. Williams, In-vitro Corrosion and Wear of Titanium Alloys in the Biological Environment, Biomaterials, 1996, 17(22), p 2117–2126CrossRef
7.
go back to reference M. Chellappa and U. Vijayalakshmi, Electrophoretic Deposition of Silica and its Composite Coatings on Ti-6Al-4V, and Its In Vitro Corrosion Behaviour for Biomedical Applications, Mater. Sci. Eng: C, 2017, 71, p 879–890CrossRef M. Chellappa and U. Vijayalakshmi, Electrophoretic Deposition of Silica and its Composite Coatings on Ti-6Al-4V, and Its In Vitro Corrosion Behaviour for Biomedical Applications, Mater. Sci. Eng: C, 2017, 71, p 879–890CrossRef
8.
go back to reference C.H. Ng, N. Rao, W.C. Law, G. Xu, T.L. Cheung, F.T. Cheng, X. Wang, and H.C. Man, Enhancing the Cell Proliferation Performance of NiTi Substrate by Laser Diffusion Nitriding, Surf. Coat. Technol, 2017, 309, p 59–66CrossRef C.H. Ng, N. Rao, W.C. Law, G. Xu, T.L. Cheung, F.T. Cheng, X. Wang, and H.C. Man, Enhancing the Cell Proliferation Performance of NiTi Substrate by Laser Diffusion Nitriding, Surf. Coat. Technol, 2017, 309, p 59–66CrossRef
9.
go back to reference X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R Rep, 2004, 47(3), p 49–121CrossRef X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R Rep, 2004, 47(3), p 49–121CrossRef
10.
go back to reference Z.A. Uwais, M.A. Hussein, M.A. Samad, and N. Al-Aqeeli, Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review, Arab J. Sci. Eng., (2017). doi:10.1007/s13369-017-2624-x Z.A. Uwais, M.A. Hussein, M.A. Samad, and N. Al-Aqeeli, Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review, Arab J. Sci. Eng., (2017). doi:10.​1007/​s13369-017-2624-x
11.
go back to reference F.J. Braga, R.F. Marques, E.A. de Filho, and A.C. Guastaldi, Surface Modification of Ti Dental Implants by Nd: YVO 4 Laser Irradiation, Appl. Surf. Sci., 2007, 253(23), p 9203–9208CrossRef F.J. Braga, R.F. Marques, E.A. de Filho, and A.C. Guastaldi, Surface Modification of Ti Dental Implants by Nd: YVO 4 Laser Irradiation, Appl. Surf. Sci., 2007, 253(23), p 9203–9208CrossRef
12.
go back to reference Y. Gao et al., Improved Biological Performance of Low Modulus Ti-24Nb-4Zr-7.9 Sn Implants Due to Surface Modification by Anodic Oxidation, Appl. Surf. Sci, 2009, 255(9), p 5009–5015CrossRef Y. Gao et al., Improved Biological Performance of Low Modulus Ti-24Nb-4Zr-7.9 Sn Implants Due to Surface Modification by Anodic Oxidation, Appl. Surf. Sci, 2009, 255(9), p 5009–5015CrossRef
13.
go back to reference R. Singh and N.B. Dahotre, Corrosion Degradation and Prevention by Surface Modification of Biometallic Materials, J. Mater. Sci. Mater. Med., 2007, 18(5), p 725–751CrossRef R. Singh and N.B. Dahotre, Corrosion Degradation and Prevention by Surface Modification of Biometallic Materials, J. Mater. Sci. Mater. Med., 2007, 18(5), p 725–751CrossRef
14.
go back to reference A. Kurella and N.B. Dahotre, Surface modification for Bioimplants: The Role of Laser Surface Engineering, J. Biomater. Appl., 2005, 20(1), p 5–50CrossRef A. Kurella and N.B. Dahotre, Surface modification for Bioimplants: The Role of Laser Surface Engineering, J. Biomater. Appl., 2005, 20(1), p 5–50CrossRef
15.
go back to reference S.T. Picraux and L.E. Pope, Tailored Surface Modification by Ion Implantation and Laser Treatment, Science, 1984, 226, p 615–622CrossRef S.T. Picraux and L.E. Pope, Tailored Surface Modification by Ion Implantation and Laser Treatment, Science, 1984, 226, p 615–622CrossRef
16.
go back to reference H. Zhou, F. Li, B. He, J. Wang, and B. Sun, Air plasma Sprayed Thermal Barrier Coatings on Titanium Alloy Substrates, Surf. Coat. Technol., 2007, 201(16), p 7360–7367CrossRef H. Zhou, F. Li, B. He, J. Wang, and B. Sun, Air plasma Sprayed Thermal Barrier Coatings on Titanium Alloy Substrates, Surf. Coat. Technol., 2007, 201(16), p 7360–7367CrossRef
17.
go back to reference H. Gruner, Thermal Spray Coatings on Titanium, Titan. Med. Springer, 2001, 2001, p 375–416CrossRef H. Gruner, Thermal Spray Coatings on Titanium, Titan. Med. Springer, 2001, 2001, p 375–416CrossRef
18.
go back to reference M. Ikeyama, S. Nakao, H. Morikawa, Y. Yokogawa, L.S. Wielunski, R.A. Clissold, and T. Bell, Increase of Surface Hardness Induced by O, Ca or P Ion Implantation into Titanium, Surf. Coat. Technol., 2000, 128, p 400–403CrossRef M. Ikeyama, S. Nakao, H. Morikawa, Y. Yokogawa, L.S. Wielunski, R.A. Clissold, and T. Bell, Increase of Surface Hardness Induced by O, Ca or P Ion Implantation into Titanium, Surf. Coat. Technol., 2000, 128, p 400–403CrossRef
19.
go back to reference M. Tlotleng, E. Akinlabi, M. Shukla, and S. Pityana, Microstructures, Hardness and Bioactivity of Hydroxyapatite Coatings Deposited by Direct Laser Melting Process, Mater. Sci. Eng. C, 2014, 43, p 189–198CrossRef M. Tlotleng, E. Akinlabi, M. Shukla, and S. Pityana, Microstructures, Hardness and Bioactivity of Hydroxyapatite Coatings Deposited by Direct Laser Melting Process, Mater. Sci. Eng. C, 2014, 43, p 189–198CrossRef
20.
go back to reference M. Kaczmarek, M.U. Jurczyk, A. Miklaszewski, A. Paszel-Jaworska, A. Romaniuk, N. Lipińska, J. Żurawski, P. Urbaniak, and K. Jurczyk, In Vitro Biocompatibility of Titanium After Plasma Surface Alloying with Boron, Mater. Sci. Eng. C, 2016, 69, p 1240–1247CrossRef M. Kaczmarek, M.U. Jurczyk, A. Miklaszewski, A. Paszel-Jaworska, A. Romaniuk, N. Lipińska, J. Żurawski, P. Urbaniak, and K. Jurczyk, In Vitro Biocompatibility of Titanium After Plasma Surface Alloying with Boron, Mater. Sci. Eng. C, 2016, 69, p 1240–1247CrossRef
21.
go back to reference G.C. Xu, Y. Hibino, Y. Nishimura, and M. Yatsuzuka, Hydrogenated Amorphous Carbon Formation with Plasma-Immersion Ion Plating, Surf. Coat. Technol., 2003, 169, p 299–302CrossRef G.C. Xu, Y. Hibino, Y. Nishimura, and M. Yatsuzuka, Hydrogenated Amorphous Carbon Formation with Plasma-Immersion Ion Plating, Surf. Coat. Technol., 2003, 169, p 299–302CrossRef
22.
go back to reference H. Watanabe, Y. Sato, C. Nie, A. Ando, S. Ohtani, and N. Iwamoto, The Mechanical Properties and Microstructure of Ti-Si-N Nanocomposite Films by Ion Plating, Surf. Coat. Technol., 2003, 169, p 452–455CrossRef H. Watanabe, Y. Sato, C. Nie, A. Ando, S. Ohtani, and N. Iwamoto, The Mechanical Properties and Microstructure of Ti-Si-N Nanocomposite Films by Ion Plating, Surf. Coat. Technol., 2003, 169, p 452–455CrossRef
23.
go back to reference T. Matsue, T. Hanabusa, and Y. Ikeuchi, The Structure of TiN Films Deposited by Arc Ion Plating, Vacuum, 2002, 66(3), p 435–439CrossRef T. Matsue, T. Hanabusa, and Y. Ikeuchi, The Structure of TiN Films Deposited by Arc Ion Plating, Vacuum, 2002, 66(3), p 435–439CrossRef
24.
go back to reference K.G. Budinski, Tribological Properties of Titanium Alloys, Wear, 1991, 151(2), p 203–217CrossRef K.G. Budinski, Tribological Properties of Titanium Alloys, Wear, 1991, 151(2), p 203–217CrossRef
25.
go back to reference V. Fouquet, L. Pichon, M. Drouet, and A. Straboni, Plasma Assisted Nitridation of Ti-6Al-4V, Appl. Surf. Sci., 2004, 221(1), p 248–258CrossRef V. Fouquet, L. Pichon, M. Drouet, and A. Straboni, Plasma Assisted Nitridation of Ti-6Al-4V, Appl. Surf. Sci., 2004, 221(1), p 248–258CrossRef
26.
go back to reference B. Januszewicz and L. Klimek, Nitriding of Titanium and Ti6Al4V Alloy in Ammonia Gas Under Low Pressure, Mater. Sci. Technol., 2010, 26(5), p 586–590CrossRef B. Januszewicz and L. Klimek, Nitriding of Titanium and Ti6Al4V Alloy in Ammonia Gas Under Low Pressure, Mater. Sci. Technol., 2010, 26(5), p 586–590CrossRef
27.
go back to reference B.S. Yilbas, C. Karatas, O. Keles, I.Y. Usta, and M. Ahsan, CO2 Laser Gas Assisted Nitriding of Ti-6Al-4V Alloy, Appl. Surf. Sci., 2006, 252(24), p 8557–8564CrossRef B.S. Yilbas, C. Karatas, O. Keles, I.Y. Usta, and M. Ahsan, CO2 Laser Gas Assisted Nitriding of Ti-6Al-4V Alloy, Appl. Surf. Sci., 2006, 252(24), p 8557–8564CrossRef
28.
go back to reference M. Geetha, U.K. Mudali, N.D. Pandey, R. Asokamani, and B. Raj, Microstructural and Corrosion Evaluation of Laser Surface Nitrided Ti-13Nb-13Zr Alloy, Surf. Eng., 2004, 20(1), p 68–74CrossRef M. Geetha, U.K. Mudali, N.D. Pandey, R. Asokamani, and B. Raj, Microstructural and Corrosion Evaluation of Laser Surface Nitrided Ti-13Nb-13Zr Alloy, Surf. Eng., 2004, 20(1), p 68–74CrossRef
29.
go back to reference H. Behrndt and A. Lunk, Biocompatibility of TiN Preclinical and Clinical Investigations, Mater. Sci. Eng A, 1991, 139, p 58–60CrossRef H. Behrndt and A. Lunk, Biocompatibility of TiN Preclinical and Clinical Investigations, Mater. Sci. Eng A, 1991, 139, p 58–60CrossRef
30.
go back to reference S. Shimadaa, T.Y. Takadaa, and J. Tsujino, Deposition of TiN Films on Various Substrates from Alkoxide Solution by Plasma-Enhanced CVD, Surf. Coat. Technol., 2005, 199(1), p 72–76CrossRef S. Shimadaa, T.Y. Takadaa, and J. Tsujino, Deposition of TiN Films on Various Substrates from Alkoxide Solution by Plasma-Enhanced CVD, Surf. Coat. Technol., 2005, 199(1), p 72–76CrossRef
31.
go back to reference A. Śliwa, J. Mikuła, K. Gołombek, T. Tański, W. Kwaśny, M. Bonek, and Z. Brytan, Prediction of the Properties of PVD/CVD Coatings with the Use of FEM Analysis, Appl. Surf. Sci., 2016, 388, p 281–287CrossRef A. Śliwa, J. Mikuła, K. Gołombek, T. Tański, W. Kwaśny, M. Bonek, and Z. Brytan, Prediction of the Properties of PVD/CVD Coatings with the Use of FEM Analysis, Appl. Surf. Sci., 2016, 388, p 281–287CrossRef
32.
go back to reference A. Naghibi, K. Raeissi, and M.H. Fathi, Corrosion and Tribocorrosion Behavior of Ti/TiN PVD Coating on 316L Stainless Steel Substrate in Ringer’s Solution, Mater. Chem. Phys., 2014, 148(3), p 614–623CrossRef A. Naghibi, K. Raeissi, and M.H. Fathi, Corrosion and Tribocorrosion Behavior of Ti/TiN PVD Coating on 316L Stainless Steel Substrate in Ringer’s Solution, Mater. Chem. Phys., 2014, 148(3), p 614–623CrossRef
33.
go back to reference T.M. Muraleedharan and E.I. Meletis, Surface Modification of Pure Titanium and Ti-6Al-4V by Intensified Plasma Ion Nitriding, Thin Solid Films, 1992, 221(1–2), p 104–113CrossRef T.M. Muraleedharan and E.I. Meletis, Surface Modification of Pure Titanium and Ti-6Al-4V by Intensified Plasma Ion Nitriding, Thin Solid Films, 1992, 221(1–2), p 104–113CrossRef
34.
go back to reference K.L. Dahm, I.A. Anderson, and P.A. Darnley, Hard Coatings for Orthopedic Implants, Surf. Eng., 1995, 11(2), p 138–144CrossRef K.L. Dahm, I.A. Anderson, and P.A. Darnley, Hard Coatings for Orthopedic Implants, Surf. Eng., 1995, 11(2), p 138–144CrossRef
35.
go back to reference B.S. Yilbas, A.Z. Sahin, Z. Ahmad, and B.J.A. Aleem, A Study of the Corrosion Properties of TiN Coated and Nitrided Ti-6Al-4V, Corros. Sci., 1995, 37(10), p 1627–1636CrossRef B.S. Yilbas, A.Z. Sahin, Z. Ahmad, and B.J.A. Aleem, A Study of the Corrosion Properties of TiN Coated and Nitrided Ti-6Al-4V, Corros. Sci., 1995, 37(10), p 1627–1636CrossRef
36.
go back to reference B.S. Yilbas, A.F. Arif, C. Karatas, S. Akhtar, and B.J. Aleem, Laser Nitriding of Tool Steel: Thermal Stress Analysis, Int. J. Adv. Manuf. Technol., 2010, 49(9), p 1009–1018CrossRef B.S. Yilbas, A.F. Arif, C. Karatas, S. Akhtar, and B.J. Aleem, Laser Nitriding of Tool Steel: Thermal Stress Analysis, Int. J. Adv. Manuf. Technol., 2010, 49(9), p 1009–1018CrossRef
37.
go back to reference P. Jiang, X.L. He, X.X. Li, L.G. Yu, and H.M. Wang, Wear Resistance of a Laser Surface Alloyed Ti-6Al-4V Alloy, Surf. Coat. Technol., 2000, 130(1), p 24–28CrossRef P. Jiang, X.L. He, X.X. Li, L.G. Yu, and H.M. Wang, Wear Resistance of a Laser Surface Alloyed Ti-6Al-4V Alloy, Surf. Coat. Technol., 2000, 130(1), p 24–28CrossRef
38.
go back to reference I. Garcia and J.J. De Damborenea, Corrosion Properties of TiN Prepared by Laser Gas Alloying of Ti and Ti6Al4V, Corros. Sci., 1998, 40(8), p 1411–1419CrossRef I. Garcia and J.J. De Damborenea, Corrosion Properties of TiN Prepared by Laser Gas Alloying of Ti and Ti6Al4V, Corros. Sci., 1998, 40(8), p 1411–1419CrossRef
39.
go back to reference T.M. Manhabosco, S.M. Tamborim, C.B. Dos Santos, and I.L. Müller, Tribological, Electrochemical and Tribo-Electrochemical Characterization of Bare and Nitrided Ti6Al4V in Simulated Body Fluid Solution, Corros. Sci., 2001, 53(5), p 1786–1793CrossRef T.M. Manhabosco, S.M. Tamborim, C.B. Dos Santos, and I.L. Müller, Tribological, Electrochemical and Tribo-Electrochemical Characterization of Bare and Nitrided Ti6Al4V in Simulated Body Fluid Solution, Corros. Sci., 2001, 53(5), p 1786–1793CrossRef
40.
go back to reference S. Sathish, M. Geetha, N.D. Pandey, C. Richard, and R. Asokamani, Studies on the Corrosion and Wear Behavior of the Laser Nitrided Biomedical Titanium and Its Alloys, Mater. Sci. Eng. C, 2010, 30(3), p 376–382CrossRef S. Sathish, M. Geetha, N.D. Pandey, C. Richard, and R. Asokamani, Studies on the Corrosion and Wear Behavior of the Laser Nitrided Biomedical Titanium and Its Alloys, Mater. Sci. Eng. C, 2010, 30(3), p 376–382CrossRef
41.
go back to reference H.D. Vora, R.S. Rajamure, S.N. Dahotre, Y.H. Ho, R. Banerjee, and N.B. Dahotre, Integrated Experimental and Theoretical Approach for Corrosion and Wear Evaluation of Laser Surface Nitrided, Ti-6Al-4V Biomaterial in Physiological Solution, J. Mech. Behav. Biomed. Mater., 2014, 37, p 153–164CrossRef H.D. Vora, R.S. Rajamure, S.N. Dahotre, Y.H. Ho, R. Banerjee, and N.B. Dahotre, Integrated Experimental and Theoretical Approach for Corrosion and Wear Evaluation of Laser Surface Nitrided, Ti-6Al-4V Biomaterial in Physiological Solution, J. Mech. Behav. Biomed. Mater., 2014, 37, p 153–164CrossRef
42.
go back to reference T.M. Manhabosco, S.M. Tamborim, C.B. dos Santos, and I.L. Müller, Tribological, Electrochemical and Tribo-Electrochemical Characterization of Bare and Nitrided Ti6Al4V in Simulated Body Fluid Solution, Corros. Sci., 2011, 53(5), p 1786–1793CrossRef T.M. Manhabosco, S.M. Tamborim, C.B. dos Santos, and I.L. Müller, Tribological, Electrochemical and Tribo-Electrochemical Characterization of Bare and Nitrided Ti6Al4V in Simulated Body Fluid Solution, Corros. Sci., 2011, 53(5), p 1786–1793CrossRef
43.
go back to reference M.A. Hussein, C. Suryanarayana, and N. Al-Aqeeli, Fabrication of Nano-grained Ti-Nb-Zr Biomaterials Using Spark Plasma Sintering, Mater. Des., 2015, 78, p 693–700CrossRef M.A. Hussein, C. Suryanarayana, and N. Al-Aqeeli, Fabrication of Nano-grained Ti-Nb-Zr Biomaterials Using Spark Plasma Sintering, Mater. Des., 2015, 78, p 693–700CrossRef
44.
go back to reference M.V. Popa, E. Vasilescu, P. Drob, C. Vasilescu, S.I. Drob, D. Mareci, and J.C.M. Rosca, Corrosion Resistance Improvement of Titanium Base Alloys, Quim. Nova, 2010, 33(9), p 1892–1896CrossRef M.V. Popa, E. Vasilescu, P. Drob, C. Vasilescu, S.I. Drob, D. Mareci, and J.C.M. Rosca, Corrosion Resistance Improvement of Titanium Base Alloys, Quim. Nova, 2010, 33(9), p 1892–1896CrossRef
45.
go back to reference C.H. Ng, C.W. Chan, H.C. Man, D. Waugh, and J. Lawrence, Modifications of Surface Properties Of Beta Ti by Laser Gas Diffusion Nitriding, J. Laser Appl., 2016, 28(2), p 022505CrossRef C.H. Ng, C.W. Chan, H.C. Man, D. Waugh, and J. Lawrence, Modifications of Surface Properties Of Beta Ti by Laser Gas Diffusion Nitriding, J. Laser Appl., 2016, 28(2), p 022505CrossRef
46.
go back to reference W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583CrossRef W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583CrossRef
47.
go back to reference T. Kokubo and H. Takadama, How Useful is SBF in Predicting In vivo Bone Bioactivity, Biomaterials, 2006, 27(15), p 2907–2915CrossRef T. Kokubo and H. Takadama, How Useful is SBF in Predicting In vivo Bone Bioactivity, Biomaterials, 2006, 27(15), p 2907–2915CrossRef
48.
go back to reference H.C. Man, M. Bai, and F.T. Cheng, Laser Diffusion Nitriding of Ti-6Al-4V for Improving Hardness and Wear Resistance, Appl. Surf. Sci., 2011, 258(1), p 436–441CrossRef H.C. Man, M. Bai, and F.T. Cheng, Laser Diffusion Nitriding of Ti-6Al-4V for Improving Hardness and Wear Resistance, Appl. Surf. Sci., 2011, 258(1), p 436–441CrossRef
49.
go back to reference B.S. Yilbas, H. Ali, and C. Karatas, Laser Gas Assisted Treatment of Ti-Alloy: Analysis of Surface Characteristics, Opt. Laser Technol., 2016, 78, p 159–166 ([INVITED])CrossRef B.S. Yilbas, H. Ali, and C. Karatas, Laser Gas Assisted Treatment of Ti-Alloy: Analysis of Surface Characteristics, Opt. Laser Technol., 2016, 78, p 159–166 ([INVITED])CrossRef
50.
go back to reference S.L.R. Da Silva, L.O. Kerber, L. Amaral, and C.A. Dos Santos, X-ray Diffraction Measurements of Plasma-Nitrided Ti-6Al-4V, Surf. Coat. Technol., 1999, 116, p 342–346CrossRef S.L.R. Da Silva, L.O. Kerber, L. Amaral, and C.A. Dos Santos, X-ray Diffraction Measurements of Plasma-Nitrided Ti-6Al-4V, Surf. Coat. Technol., 1999, 116, p 342–346CrossRef
51.
go back to reference A. Biswas, L. Li, U.K. Chatterjee, I. Manna, S.K. Pabi, and J.D. Majumdar, Mechanical and Electrochemical Properties of Laser Surface Nitrided Ti-6Al-4V, Scr. Mater., 2008, 59(2), p 239–242CrossRef A. Biswas, L. Li, U.K. Chatterjee, I. Manna, S.K. Pabi, and J.D. Majumdar, Mechanical and Electrochemical Properties of Laser Surface Nitrided Ti-6Al-4V, Scr. Mater., 2008, 59(2), p 239–242CrossRef
52.
go back to reference E. Toeroek, A.J. Perry, L. Chollet, and W.D. Sproul, Young’s Modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 1987, 153(1–3), p 37–43CrossRef E. Toeroek, A.J. Perry, L. Chollet, and W.D. Sproul, Young’s Modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 1987, 153(1–3), p 37–43CrossRef
53.
go back to reference J.C. Caicedo, G. Zambrano, W. Aperador, L. Escobar-Alarcon, and E. Camps, Mechanical and Electrochemical Characterization of Vanadium Nitride (VN) Thin Films, Appl. Surf. Sci., 2011, 258(1), p p312–p320CrossRef J.C. Caicedo, G. Zambrano, W. Aperador, L. Escobar-Alarcon, and E. Camps, Mechanical and Electrochemical Characterization of Vanadium Nitride (VN) Thin Films, Appl. Surf. Sci., 2011, 258(1), p p312–p320CrossRef
54.
go back to reference G.S. Kim, S.Y. Lee, J.H. Hahn, and S.Y. Lee, Synthesis of CrNyAlN Superlattice Coatings Using Closed-Field Unbalanced Magnetron Sputtering Process, Surf. Coat. Technol., 2003, 171(1), p 91–95CrossRef G.S. Kim, S.Y. Lee, J.H. Hahn, and S.Y. Lee, Synthesis of CrNyAlN Superlattice Coatings Using Closed-Field Unbalanced Magnetron Sputtering Process, Surf. Coat. Technol., 2003, 171(1), p 91–95CrossRef
55.
go back to reference A. Hynowska, A. Blanquer, E. Pellicer, J. Fornell, S. Suriñach, M. Baró, S. González, E. Ibáñez, L. Barrios, C. Nogués, and J. Sort, Novel Ti–Zr–Hf–Fe Nanostructured Alloy for Biomedical Applications, Materials, 2013, 11(6), p 4930–4945CrossRef A. Hynowska, A. Blanquer, E. Pellicer, J. Fornell, S. Suriñach, M. Baró, S. González, E. Ibáñez, L. Barrios, C. Nogués, and J. Sort, Novel Ti–Zr–Hf–Fe Nanostructured Alloy for Biomedical Applications, Materials, 2013, 11(6), p 4930–4945CrossRef
56.
go back to reference J.P. Hirth, The Influence of Grain Boundaries on Mechanical Properties, Metall. Trans., 1972, 3(10), p 3047–3067CrossRef J.P. Hirth, The Influence of Grain Boundaries on Mechanical Properties, Metall. Trans., 1972, 3(10), p 3047–3067CrossRef
57.
go back to reference L. Thair, U.K. Mudali, N. Bhuvaneswaran, K.G.M. Nair, R. Asokamani, and B. Raj, Nitrogen Ion Implantation and In Vitro Corrosion Behavior of as-cast Ti-6Al-7Nb Alloy, Corros. Sci., 2002, 44(11), p 2439–2457CrossRef L. Thair, U.K. Mudali, N. Bhuvaneswaran, K.G.M. Nair, R. Asokamani, and B. Raj, Nitrogen Ion Implantation and In Vitro Corrosion Behavior of as-cast Ti-6Al-7Nb Alloy, Corros. Sci., 2002, 44(11), p 2439–2457CrossRef
58.
go back to reference E. Galvanetto, F.P. Galliano, A. Fossati, and F. Borgioli, Corrosion Resistance Properties of Plasma Nitrided Ti-6Al-4V Alloy in Hydrochloric Acid Solutions, Corros. Sci., 2002, 44(7), p 1593–1606CrossRef E. Galvanetto, F.P. Galliano, A. Fossati, and F. Borgioli, Corrosion Resistance Properties of Plasma Nitrided Ti-6Al-4V Alloy in Hydrochloric Acid Solutions, Corros. Sci., 2002, 44(7), p 1593–1606CrossRef
59.
go back to reference S. Rossi, L. Fedrizzi, T. Bacci, and G. Pradelli, Corrosion Behaviour of Glow Discharge Nitrided Titanium Alloys, Corros. Sci., 2003, 45(3), p 511–529CrossRef S. Rossi, L. Fedrizzi, T. Bacci, and G. Pradelli, Corrosion Behaviour of Glow Discharge Nitrided Titanium Alloys, Corros. Sci., 2003, 45(3), p 511–529CrossRef
60.
go back to reference S.S. Latthe, P. Sudhagar, A. Devadoss, A.M. Kumar, S. Liu, C. Terashima, K. Nakata, and A. Fujishima, Mechanically Bendable Superhydrophobic Steel Surface with Its Self-cleaning and Corrosion-Resistant Properties, J. Mater. Chem. A, 2015, 3(27), p 14263–14271CrossRef S.S. Latthe, P. Sudhagar, A. Devadoss, A.M. Kumar, S. Liu, C. Terashima, K. Nakata, and A. Fujishima, Mechanically Bendable Superhydrophobic Steel Surface with Its Self-cleaning and Corrosion-Resistant Properties, J. Mater. Chem. A, 2015, 3(27), p 14263–14271CrossRef
61.
go back to reference M. Geetha, D. Durgalaksshmi, and R. Asokamani, Biomedical Implants: Corrosion and its Prevention—A Review, Recent Pat. Corros. Sci., 2010, 2, p 40–54CrossRef M. Geetha, D. Durgalaksshmi, and R. Asokamani, Biomedical Implants: Corrosion and its Prevention—A Review, Recent Pat. Corros. Sci., 2010, 2, p 40–54CrossRef
62.
go back to reference H.J. Rack and J.I. Qazi, Titanium Alloys for Biomedical Applications, Mat. Sci. Eng. C, 2006, 26(8), p 1269–1277CrossRef H.J. Rack and J.I. Qazi, Titanium Alloys for Biomedical Applications, Mat. Sci. Eng. C, 2006, 26(8), p 1269–1277CrossRef
63.
go back to reference A. Choubey, B. Basu, and R. Balasubramaniam, Electrochemical Behavior of Ti-based Alloys in Simulated Human Body Fluid Environment, Trends Biomater. Artif. Organs, 2005, 18(2), p 64–72 A. Choubey, B. Basu, and R. Balasubramaniam, Electrochemical Behavior of Ti-based Alloys in Simulated Human Body Fluid Environment, Trends Biomater. Artif. Organs, 2005, 18(2), p 64–72
64.
go back to reference F.A. Shah, M. Trobos, P. Thomsen, and A. Palmquist, Commercially Pure Titanium (cp-Ti) Versus Titanium Alloy (Ti6Al4V) Materials as Bone Anchored Implants—Is One Truly Better Than the Other?, Mater. Sci. Eng.: C, 2016, 62, p 960–966CrossRef F.A. Shah, M. Trobos, P. Thomsen, and A. Palmquist, Commercially Pure Titanium (cp-Ti) Versus Titanium Alloy (Ti6Al4V) Materials as Bone Anchored Implants—Is One Truly Better Than the Other?, Mater. Sci. Eng.: C, 2016, 62, p 960–966CrossRef
65.
go back to reference J. Lu, Y. Zhao, H. Niu, Y. Zhang, Y. Du, W. Zhang, and W. Huo, Electrochemical Corrosion Behavior and Elasticity Properties of Ti-6Al-xFe Alloys for Biomedical Applications, Mater. Sci. Eng C, 2016, 62, p 36–44CrossRef J. Lu, Y. Zhao, H. Niu, Y. Zhang, Y. Du, W. Zhang, and W. Huo, Electrochemical Corrosion Behavior and Elasticity Properties of Ti-6Al-xFe Alloys for Biomedical Applications, Mater. Sci. Eng C, 2016, 62, p 36–44CrossRef
66.
go back to reference L. Chenghao, J. Li’nan, Y. Chuanjun, and H. Naibao, Crevice Corrosion Behavior of CP Ti, Ti-6Al-4V Alloy and Ti-Ni Shape Memory Alloy in Artificial Body Fluids, Rare Metal Mater. Eng., 2015, 44(4), p 781–785CrossRef L. Chenghao, J. Li’nan, Y. Chuanjun, and H. Naibao, Crevice Corrosion Behavior of CP Ti, Ti-6Al-4V Alloy and Ti-Ni Shape Memory Alloy in Artificial Body Fluids, Rare Metal Mater. Eng., 2015, 44(4), p 781–785CrossRef
67.
go back to reference I. Cvijović-Alagić, Z. Cvijović, S. Mitrović, V. Panić, and M. Rakin, Wear and Corrosion Behaviour of Ti-13Nb-13Zr and Ti-6Al-4V Alloys in Simulated Physiological Solution, Corros. Sci., 2011, 53(2), p 796–808CrossRef I. Cvijović-Alagić, Z. Cvijović, S. Mitrović, V. Panić, and M. Rakin, Wear and Corrosion Behaviour of Ti-13Nb-13Zr and Ti-6Al-4V Alloys in Simulated Physiological Solution, Corros. Sci., 2011, 53(2), p 796–808CrossRef
68.
go back to reference A. Robin, O.A.S. Carvalho, S.G. Schneider, and S. Schneider, Corrosion Behavior of Ti-xNb-13Zr Alloys in Ringer’s Solution, Mater. Corros., 2008, 59(12), p 929–933CrossRef A. Robin, O.A.S. Carvalho, S.G. Schneider, and S. Schneider, Corrosion Behavior of Ti-xNb-13Zr Alloys in Ringer’s Solution, Mater. Corros., 2008, 59(12), p 929–933CrossRef
69.
go back to reference A. Biswas, L. Li, T.K. Maity, U.K. Chatterjee, B.L. Mordike, I. Manna, and J.D. Majumdar, Laser Surface Treatment of Ti-6Al-4V for Bio-implant Application, Lasers Eng, 2007, 17(1–2), p 59–73 A. Biswas, L. Li, T.K. Maity, U.K. Chatterjee, B.L. Mordike, I. Manna, and J.D. Majumdar, Laser Surface Treatment of Ti-6Al-4V for Bio-implant Application, Lasers Eng, 2007, 17(1–2), p 59–73
70.
go back to reference R.S. Razavi, G.R. Gordani, and H.C. Man, A Review of the Corrosion of Laser Nitrided Ti-6Al-4V, Anti Corros. Methods Mater., 2011, 58(3), p 140–154CrossRef R.S. Razavi, G.R. Gordani, and H.C. Man, A Review of the Corrosion of Laser Nitrided Ti-6Al-4V, Anti Corros. Methods Mater., 2011, 58(3), p 140–154CrossRef
71.
go back to reference R. Vera et al., Corrosion Protection of Carbon Steel and Copper by Polyaniline and Poly (ortho-methoxyaniline) Films in Sodium Chloride Medium. Electrochemical and Morphological Study, J. Appl. Electrochem., 2007, 37(4), p 19–525CrossRef R. Vera et al., Corrosion Protection of Carbon Steel and Copper by Polyaniline and Poly (ortho-methoxyaniline) Films in Sodium Chloride Medium. Electrochemical and Morphological Study, J. Appl. Electrochem., 2007, 37(4), p 19–525CrossRef
72.
go back to reference M. Mobin and N. Tanveer, Corrosion Performance of Chemically Synthesized Poly(aniline-coo-toluidine) Copolymer Coating on Mild Steel, J. Coat. Technol. Res., 2012, 9(1), p 27–38CrossRef M. Mobin and N. Tanveer, Corrosion Performance of Chemically Synthesized Poly(aniline-coo-toluidine) Copolymer Coating on Mild Steel, J. Coat. Technol. Res., 2012, 9(1), p 27–38CrossRef
73.
go back to reference Y. Mantani and M. Tajima, Phase Transformation of Quenched α″ Martensite by Aging in Ti-Nb Alloys, Mater. Sci. Eng., 2006, 438(440), p 315–319CrossRef Y. Mantani and M. Tajima, Phase Transformation of Quenched α″ Martensite by Aging in Ti-Nb Alloys, Mater. Sci. Eng., 2006, 438(440), p 315–319CrossRef
74.
go back to reference S.L. Assis, S. Wolynec, and I. Costa, Corrosion Characterization of Titanium Alloys by Electrochemical Techniques, Electrochim. Acta, 2006, 51(8), p 1815–1819CrossRef S.L. Assis, S. Wolynec, and I. Costa, Corrosion Characterization of Titanium Alloys by Electrochemical Techniques, Electrochim. Acta, 2006, 51(8), p 1815–1819CrossRef
75.
go back to reference D.Q. Martins, W.R. Osorio, M.E.P. Souza, R. Caram, and A. Garcia, Effects of Zr Content on Microstructure and Corrosion Resistance of Ti-30Nb-Zr Casting Alloys for Biomedical Applications, Electrochim. Acta, 2008, 53(6), p 2809–2817CrossRef D.Q. Martins, W.R. Osorio, M.E.P. Souza, R. Caram, and A. Garcia, Effects of Zr Content on Microstructure and Corrosion Resistance of Ti-30Nb-Zr Casting Alloys for Biomedical Applications, Electrochim. Acta, 2008, 53(6), p 2809–2817CrossRef
76.
go back to reference E. Salahinejad, M.J. Hadianfard, D.D. Macdonald, S. Sharifi-Asl, M. Mozafari, K.J. Walker, A. Tahmasbi Rad, S.V. Madihally, D. Vashaee, and L. Tayebi, Surface Modification of Stainless Steel Orthopedic Implants by sol–gel ZrTiO4 and ZrTiO4-PMMA Coatings, J. Biomed. Nanotechnol., 2013, 9(8), p 1327–1335CrossRef E. Salahinejad, M.J. Hadianfard, D.D. Macdonald, S. Sharifi-Asl, M. Mozafari, K.J. Walker, A. Tahmasbi Rad, S.V. Madihally, D. Vashaee, and L. Tayebi, Surface Modification of Stainless Steel Orthopedic Implants by sol–gel ZrTiO4 and ZrTiO4-PMMA Coatings, J. Biomed. Nanotechnol., 2013, 9(8), p 1327–1335CrossRef
77.
go back to reference E. Salahinejad, M.J. Hadianfard, D.D. Macdonald, S. Sharifi-Asl, M. Mozafari, K.J. Walker, A. Tahmasbi Rad, S.V. Madihally, and L. Tayebi, In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants, PLoS One, 2013, 8(4), p 1–8CrossRef E. Salahinejad, M.J. Hadianfard, D.D. Macdonald, S. Sharifi-Asl, M. Mozafari, K.J. Walker, A. Tahmasbi Rad, S.V. Madihally, and L. Tayebi, In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants, PLoS One, 2013, 8(4), p 1–8CrossRef
78.
go back to reference D. Pech, P. Steyer, A.-S. Loir, J.C. Sánchez-López, and J.-P. Millet, Analysis of the Corrosion Protective Ability of PACVD Silica-Based Coatings Deposited on Steel, Surf. Coat. Technol., 2006, 201(1), p 347–352CrossRef D. Pech, P. Steyer, A.-S. Loir, J.C. Sánchez-López, and J.-P. Millet, Analysis of the Corrosion Protective Ability of PACVD Silica-Based Coatings Deposited on Steel, Surf. Coat. Technol., 2006, 201(1), p 347–352CrossRef
Metadata
Title
Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid
Authors
M. A. Hussein
A. Madhan Kumar
Bekir S. Yilbas
N. Al-Aqeeli
Publication date
11-10-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 11/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2955-5

Other articles of this Issue 11/2017

Journal of Materials Engineering and Performance 11/2017 Go to the issue

Premium Partners