Skip to main content
Top
Published in: International Journal of Computer Vision 7/2023

13-04-2023

Learning Accurate Performance Predictors for Ultrafast Automated Model Compression

Authors: Ziwei Wang, Jiwen Lu, Han Xiao, Shengyu Liu, Jie Zhou

Published in: International Journal of Computer Vision | Issue 7/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we propose an ultrafast automated model compression framework called SeerNet for flexible network deployment. Conventional non-differen-tiable methods discretely search the desirable compression policy based on the accuracy from exhaustively trained lightweight models, and existing differentiable methods optimize an extremely large supernet to obtain the required compressed model for deployment. They both cause heavy computational cost due to the complex compression policy search and evaluation process. On the contrary, we obtain the optimal efficient networks by directly optimizing the compression policy with an accurate performance predictor, where the ultrafast automated model compression for various computational cost constraint is achieved without complex compression policy search and evaluation. Specifically, we first train the performance predictor based on the accuracy from uncertain compression policies actively selected by efficient evolutionary search, so that informative supervision is provided to learn the accurate performance predictor with acceptable cost. Then we leverage the gradient that maximizes the predicted performance under the barrier complexity constraint for ultrafast acquisition of the desirable compression policy, where adaptive update stepsizes with momentum are employed to enhance optimality of the acquired pruning and quantization strategy. Compared with the state-of-the-art automated model compression methods, experimental results on image classification and object detection show that our method achieves competitive accuracy-complexity trade-offs with significant reduction of the search cost. Code is available at https://​github.​com/​ZiweiWangTHU/​SeerNet.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abbasnejad, E.,, Teney, D., Parvaneh, A., Shi, J., & van den Hengel, A. (2020). Counterfactual vision and language learning. In CVPR, pp. 10044–10054. Abbasnejad, E.,, Teney, D., Parvaneh, A., Shi, J., & van den Hengel, A. (2020). Counterfactual vision and language learning. In CVPR, pp. 10044–10054.
go back to reference Balcan, M.-F., Broder, A., & Zhang, T. (2007). Margin based active learning. In: COLT, pp. 35–50. Balcan, M.-F., Broder, A., & Zhang, T. (2007). Margin based active learning. In: COLT, pp. 35–50.
go back to reference Bell, S., Lawrence, Z. C., Bala, K., & Girshick, R. (2016). Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In: CVPR, pp. 2874–2883. Bell, S., Lawrence, Z. C., Bala, K., & Girshick, R. (2016). Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In: CVPR, pp. 2874–2883.
go back to reference Beluch, W. H., Genewein, T., Nürnberger, A., & Köhler, J. M. (2018). The power of ensembles for active learning in image classification. In: CVPR, pp. 9368–9377. Beluch, W. H., Genewein, T., Nürnberger, A., & Köhler, J. M. (2018). The power of ensembles for active learning in image classification. In: CVPR, pp. 9368–9377.
go back to reference Bethge, J., Bartz, C., Yang, H., Chen, Y., & Meinel, C. (2020). Meliusnet: Can binary neural networks achieve mobilenet-level accuracy? arXiv preprint arXiv:2001.05936. Bethge, J., Bartz, C., Yang, H., Chen, Y., & Meinel, C. (2020). Meliusnet: Can binary neural networks achieve mobilenet-level accuracy? arXiv preprint arXiv:​2001.​05936.
go back to reference Bulat, A., & Tzimiropoulos, G. (2021). Bit-mixer: Mixed-precision networks with runtime bit-width selection. In: ICCV, pp. 5188–5197. Bulat, A., & Tzimiropoulos, G. (2021). Bit-mixer: Mixed-precision networks with runtime bit-width selection. In: ICCV, pp. 5188–5197.
go back to reference Cai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2019). Once-for-all: Train one network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791. Cai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2019). Once-for-all: Train one network and specialize it for efficient deployment. arXiv preprint arXiv:​1908.​09791.
go back to reference Cai, Z., & Vasconcelos, N. (2020). Rethinking differentiable search for mixed-precision neural networks. In: CVPR, pp. 2349–2358. Cai, Z., & Vasconcelos, N. (2020). Rethinking differentiable search for mixed-precision neural networks. In: CVPR, pp. 2349–2358.
go back to reference Chen, G., Choi, W., Yu, X., Han, T., & Chandraker, M. (2017). Learning efficient object detection models with knowledge distillation. In: NIPS, pp. 742–751. Chen, G., Choi, W., Yu, X., Han, T., & Chandraker, M. (2017). Learning efficient object detection models with knowledge distillation. In: NIPS, pp. 742–751.
go back to reference Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J., Srinivasan, V., & Gopalakrishnan, K. (2018). Pact: Parameterized clipping activation for quantized neural networks. arXiv preprint arXiv:1805.06085. Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J., Srinivasan, V., & Gopalakrishnan, K. (2018). Pact: Parameterized clipping activation for quantized neural networks. arXiv preprint arXiv:​1805.​06085.
go back to reference Dai, X., Zhang, P., Wu, B., Yin, H., Sun, F., Wang, Y., Dukhan, M., Hu, Y., Wu, Y., Jia, Y., et al. (2019). Chamnet: Towards efficient network design through platform-aware model adaptation. In: CVPR, pp. 11398–11407. Dai, X., Zhang, P., Wu, B., Yin, H., Sun, F., Wang, Y., Dukhan, M., Hu, Y., Wu, Y., Jia, Y., et al. (2019). Chamnet: Towards efficient network design through platform-aware model adaptation. In: CVPR, pp. 11398–11407.
go back to reference Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In: CVPR, pp. 248–255. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In: CVPR, pp. 248–255.
go back to reference Denil, M., Shakibi, B., Dinh, L., De Freitas, N., et al. (2013). Predicting parameters in deep learning. In: NIPS, pp. 2148–2156. Denil, M., Shakibi, B., Dinh, L., De Freitas, N., et al. (2013). Predicting parameters in deep learning. In: NIPS, pp. 2148–2156.
go back to reference Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., & Li, J. (2018). Boosting adversarial attacks with momentum. In: CVPR, pp. 9185–9193. Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., & Li, J. (2018). Boosting adversarial attacks with momentum. In: CVPR, pp. 9185–9193.
go back to reference Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., & Keutzer, K. (2019). Hawq: Hessian aware quantization of neural networks with mixed-precision. In: ICCV, pp. 293–302. Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., & Keutzer, K. (2019). Hawq: Hessian aware quantization of neural networks with mixed-precision. In: ICCV, pp. 293–302.
go back to reference Duch, W., & Korczak, J. (1998). Optimization and global minimization methods suitable for neural networks. Neural Computing Surveys, 2, 163–212. Duch, W., & Korczak, J. (1998). Optimization and global minimization methods suitable for neural networks. Neural Computing Surveys, 2, 163–212.
go back to reference Erin Liong, V., Lu, J., Wang, G., Moulin, P., & Zhou, J. (2015). Deep hashing for compact binary codes learning. In: CVPR, pp. 2475–2483. Erin Liong, V., Lu, J., Wang, G., Moulin, P., & Zhou, J. (2015). Deep hashing for compact binary codes learning. In: CVPR, pp. 2475–2483.
go back to reference Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., & Modha, D. S. (2019). Learned step size quantization. arXiv preprint arXiv:1902.08153. Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., & Modha, D. S. (2019). Learned step size quantization. arXiv preprint arXiv:​1902.​08153.
go back to reference Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (voc) challenge. IJCV, 88(2), 303–338.CrossRef Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (voc) challenge. IJCV, 88(2), 303–338.CrossRef
go back to reference Feichtenhofer, C., Fan, H., Malik, J., & He, K. (2019). Slowfast networks for video recognition. In: ICCV, pp. 6202–6211. Feichtenhofer, C., Fan, H., Malik, J., & He, K. (2019). Slowfast networks for video recognition. In: ICCV, pp. 6202–6211.
go back to reference Finlay, C., Pooladian, A.-A., & Oberman, A. (2019). The logbarrier adversarial attack: making effective use of decision boundary information. In: ICCV, pp. 4862–4870. Finlay, C., Pooladian, A.-A., & Oberman, A. (2019). The logbarrier adversarial attack: making effective use of decision boundary information. In: ICCV, pp. 4862–4870.
go back to reference Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., & Yan, J. (2019). Differentiable soft quantization: Bridging full-precision and low-bit neural networks. arXiv preprint arXiv:1908.05033. Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., & Yan, J. (2019). Differentiable soft quantization: Bridging full-precision and low-bit neural networks. arXiv preprint arXiv:​1908.​05033.
go back to reference Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., & Lee, S. (2019). Counterfactual visual explanations. arXiv preprint arXiv:1904.07451. Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., & Lee, S. (2019). Counterfactual visual explanations. arXiv preprint arXiv:​1904.​07451.
go back to reference Habi, H. V., Jennings, R. H., & Netzer, A. (2020). Hmq: Hardware friendly mixed precision quantization block for cnns. arXiv preprint arXiv:2007.09952. Habi, H. V., Jennings, R. H., & Netzer, A. (2020). Hmq: Hardware friendly mixed precision quantization block for cnns. arXiv preprint arXiv:​2007.​09952.
go back to reference Han, S., Mao, H., & Dally, W. J. (2015a). Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149. Han, S., Mao, H., & Dally, W. J. (2015a). Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:​1510.​00149.
go back to reference Han, S., Pool, J., Tran, J., & Dally, W. (2015b). Learning both weights and connections for efficient neural network. In: NIPS, pp. 1135–1143. Han, S., Pool, J., Tran, J., & Dally, W. (2015b). Learning both weights and connections for efficient neural network. In: NIPS, pp. 1135–1143.
go back to reference He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: CVPR, pp. 770–778. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: CVPR, pp. 770–778.
go back to reference He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018a). Soft filter pruning for accelerating deep convolutional neural networks. arXiv preprint arXiv:1808.06866. He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018a). Soft filter pruning for accelerating deep convolutional neural networks. arXiv preprint arXiv:​1808.​06866.
go back to reference He, Y., Zhang, X., & Sun, J. (2017). Channel pruning for accelerating very deep neural networks. In: ICCV, pp. 1389–1397. He, Y., Zhang, X., & Sun, J. (2017). Channel pruning for accelerating very deep neural networks. In: ICCV, pp. 1389–1397.
go back to reference He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., & Han, S. (2018b). Amc: Automl for model compression and acceleration on mobile devices. In: ECCV, pp. 784–800. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., & Han, S. (2018b). Amc: Automl for model compression and acceleration on mobile devices. In: ECCV, pp. 784–800.
go back to reference Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:​1704.​04861.
go back to reference Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks. In: NIPS, pp. 4107–4115. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks. In: NIPS, pp. 4107–4115.
go back to reference Jin, Q., Yang, L., & Liao, Z. (2020). Adabits: Neural network quantization with adaptive bit-widths. In: CVPR, pp. 2146–2156. Jin, Q., Yang, L., & Liao, Z. (2020). Adabits: Neural network quantization with adaptive bit-widths. In: CVPR, pp. 2146–2156.
go back to reference Joshi, A. J., Porikli, F., & Papanikolopoulos, N. (2009). Multi-class active learning for image classification. In: CVPR, pp. 2372–2379. Joshi, A. J., Porikli, F., & Papanikolopoulos, N. (2009). Multi-class active learning for image classification. In: CVPR, pp. 2372–2379.
go back to reference Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.
go back to reference Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2016). Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710. Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2016). Pruning filters for efficient convnets. arXiv preprint arXiv:​1608.​08710.
go back to reference Li, J., Qi, Q., Wang, J., Ge, C., Li, Y., Yue, Z., & Sun, H. (2019a). Oicsr: Out-in-channel sparsity regularization for compact deep neural networks. In: CVPR, pp. 7046–7055. Li, J., Qi, Q., Wang, J., Ge, C., Li, Y., Yue, Z., & Sun, H. (2019a). Oicsr: Out-in-channel sparsity regularization for compact deep neural networks. In: CVPR, pp. 7046–7055.
go back to reference Li, R., Wang, Y., Liang, F., Qin, H., Yan, J., & Fan, R. (2019b). Fully quantized network for object detection. In: CVPR, pp. 2810–2819. Li, R., Wang, Y., Liang, F., Qin, H., Yan, J., & Fan, R. (2019b). Fully quantized network for object detection. In: CVPR, pp. 2810–2819.
go back to reference Li, X., & Guo, Y. (2014). Multi-level adaptive active learning for scene classification. In: ECCV, pp. 234–249. Li, X., & Guo, Y. (2014). Multi-level adaptive active learning for scene classification. In: ECCV, pp. 234–249.
go back to reference Li, Y., Gu, S., Mayer, C., Van Gool, L., & Timofte, R. (2020a). Group sparsity: The hinge between filter pruning and decomposition for network compression. In: CVPR, pp. 8018–8027. Li, Y., Gu, S., Mayer, C., Van Gool, L., & Timofte, R. (2020a). Group sparsity: The hinge between filter pruning and decomposition for network compression. In: CVPR, pp. 8018–8027.
go back to reference Li, Y., Dong, X., & Wei, W. (2020). Additive powers-of-two quantization: A non-uniform discretization for neural networks. ICLR. Li, Y., Dong, X., & Wei, W. (2020). Additive powers-of-two quantization: A non-uniform discretization for neural networks. ICLR.
go back to reference Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:​1509.​02971.
go back to reference Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Lawrence, Z. C. (2014). Microsoft coco: Common objects in context. In: ECCV, pp. 740–755. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Lawrence, Z. C. (2014). Microsoft coco: Common objects in context. In: ECCV, pp. 740–755.
go back to reference Liu, B., Wang, M., Foroosh, H., Tappen, M., & Pensky, M. (2015). Sparse convolutional neural networks. In: CVPR, pp. 806–814. Liu, B., Wang, M., Foroosh, H., Tappen, M., & Pensky, M. (2015). Sparse convolutional neural networks. In: CVPR, pp. 806–814.
go back to reference Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. In: ECCV, pp. 21–37. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. In: ECCV, pp. 21–37.
go back to reference Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., & Cheng, K.-T. (2018a). Bi-real net: Enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm. In: ECCV, pp. 722–737. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., & Cheng, K.-T. (2018a). Bi-real net: Enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm. In: ECCV, pp. 722–737.
go back to reference Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.-T., & Sun, J. (2019). Metapruning: Meta learning for automatic neural network channel pruning. In: ICCV, pp. 3296–3305. Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.-T., & Sun, J. (2019). Metapruning: Meta learning for automatic neural network channel pruning. In: ICCV, pp. 3296–3305.
go back to reference Liu, Z., Sun, M., Zhou, T., Huang, G., & Darrell, T. (2018b). Rethinking the value of network pruning. In: ICLR. Liu, Z., Sun, M., Zhou, T., Huang, G., & Darrell, T. (2018b). Rethinking the value of network pruning. In: ICLR.
go back to reference Lou, Q., Guo, F., Kim, M., & Liu, L., & Lei, J. (2019). Autoq: Automated kernel-wise neural network quantization. In: ICLR. Lou, Q., Guo, F., Kim, M., & Liu, L., & Lei, J. (2019). Autoq: Automated kernel-wise neural network quantization. In: ICLR.
go back to reference Louizos, C., Welling, M., & Kingma, D. P. (2017). Learning sparse neural networks through \( l_0 \) regularization. arXiv preprint arXiv:1712.01312. Louizos, C., Welling, M., & Kingma, D. P. (2017). Learning sparse neural networks through \( l_0 \) regularization. arXiv preprint arXiv:​1712.​01312.
go back to reference Louizos, C., Reisser, M., Blankevoort, T., Gavves, E., & Welling, M. (2018). Relaxed quantization for discretized neural networks. arXiv preprint arXiv:1810.01875. Louizos, C., Reisser, M., Blankevoort, T., Gavves, E., & Welling, M. (2018). Relaxed quantization for discretized neural networks. arXiv preprint arXiv:​1810.​01875.
go back to reference Luo, W., Schwing, A., & Urtasun, R. (2013). Latent structured active learning. NIPS, 26, 728–736. Luo, W., Schwing, A., & Urtasun, R. (2013). Latent structured active learning. NIPS, 26, 728–736.
go back to reference Melville, P., & Mooney, R. J. (2004). Diverse ensembles for active learning. In: ICML. Melville, P., & Mooney, R. J. (2004). Diverse ensembles for active learning. In: ICML.
go back to reference Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2016). Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440. Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2016). Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:​1611.​06440.
go back to reference Molchanov, P., Mallya, A., Tyree, S., Frosio, I., & Kautz, J. (2019). Importance estimation for neural network pruning. In: CVPR, pp. 11264–11272. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., & Kautz, J. (2019). Importance estimation for neural network pruning. In: CVPR, pp. 11264–11272.
go back to reference Peng, H., Wu, J., Chen, S., & Huang, J. (2019). Collaborative channel pruning for deep networks. In: ICML, pp. 5113–5122. Peng, H., Wu, J., Chen, S., & Huang, J. (2019). Collaborative channel pruning for deep networks. In: ICML, pp. 5113–5122.
go back to reference Phan, H., Huynh, D., He, Y., Savvides, M., & Shen, Z. (2019). Mobinet: A mobile binary network for image classification. arXiv preprint arXiv:1907.12629. Phan, H., Huynh, D., He, Y., Savvides, M., & Shen, Z. (2019). Mobinet: A mobile binary network for image classification. arXiv preprint arXiv:​1907.​12629.
go back to reference Qu, Z., Zhou, Z., Cheng, Y., & Thiele, L. (2020). Adaptive loss-aware quantization for multi-bit networks. In: CVPR, pp. 7988–7997. Qu, Z., Zhou, Z., Cheng, Y., & Thiele, L. (2020). Adaptive loss-aware quantization for multi-bit networks. In: CVPR, pp. 7988–7997.
go back to reference Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet classification using binary convolutional neural networks. In: ECCV, pp. 525–542. Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet classification using binary convolutional neural networks. In: ECCV, pp. 525–542.
go back to reference Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99.
go back to reference Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520.
go back to reference Settles, B., & Craven, M. (2008). An analysis of active learning strategies for sequence labeling tasks. In: EMNLP, pp. 1070–1079. Settles, B., & Craven, M. (2008). An analysis of active learning strategies for sequence labeling tasks. In: EMNLP, pp. 1070–1079.
go back to reference Siddiqui, Y., Valentin, J., & Nießner, M. (2020). Viewal: Active learning with viewpoint entropy for semantic segmentation. In: CVPR, pp. 9433–9443. Siddiqui, Y., Valentin, J., & Nießner, M. (2020). Viewal: Active learning with viewpoint entropy for semantic segmentation. In: CVPR, pp. 9433–9443.
go back to reference Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556.
go back to reference Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. In: ICML, pp. 1139–1147. Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. In: ICML, pp. 1139–1147.
go back to reference Uhlich, S., Mauch, L., Yoshiyama, K., Cardinaux, F., Garcia, J. A., Tiedemann, S., Kemp, T., & Nakamura, A. (2019). Differentiable quantization of deep neural networks. arXiv preprint arXiv:1905.11452. Uhlich, S., Mauch, L., Yoshiyama, K., Cardinaux, F., Garcia, J. A., Tiedemann, S., Kemp, T., & Nakamura, A. (2019). Differentiable quantization of deep neural networks. arXiv preprint arXiv:​1905.​11452.
go back to reference Vasisht, D., Damianou, A., Varma, M., & Kapoor, A. (2014). Active learning for sparse bayesian multilabel classification. In: KDD, pp. 472–481. Vasisht, D., Damianou, A., Varma, M., & Kapoor, A. (2014). Active learning for sparse bayesian multilabel classification. In: KDD, pp. 472–481.
go back to reference Vijayanarasimhan, S., & Grauman, K. (2014). Large-scale live active learning: Training object detectors with crawled data and crowds. IJCV, 108(1–2), 97–114. Vijayanarasimhan, S., & Grauman, K. (2014). Large-scale live active learning: Training object detectors with crawled data and crowds. IJCV, 108(1–2), 97–114.
go back to reference Wang, K., Liu, Z., Lin, Y., Lin, J., & Han, S. (2019a). Haq: Hardware-aware automated quantization with mixed precision. In: CVPR, pp. 8612–8620. Wang, K., Liu, Z., Lin, Y., Lin, J., & Han, S. (2019a). Haq: Hardware-aware automated quantization with mixed precision. In: CVPR, pp. 8612–8620.
go back to reference Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin, Y., & Han, S. (2020a). Apq: Joint search for network architecture, pruning and quantization policy. In: CVPR, pp. 2078–2087. Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin, Y., & Han, S. (2020a). Apq: Joint search for network architecture, pruning and quantization policy. In: CVPR, pp. 2078–2087.
go back to reference Wang, W., Song, H., Zhao, S., Shen, J., Zhao, S., Hoi, S. C. H., & Ling, H. (2019b). Learning unsupervised video object segmentation through visual attention. In: CVPR, pp. 3064–3074. Wang, W., Song, H., Zhao, S., Shen, J., Zhao, S., Hoi, S. C. H., & Ling, H. (2019b). Learning unsupervised video object segmentation through visual attention. In: CVPR, pp. 3064–3074.
go back to reference Wang, Y., Lu, Y., & Blankevoort, T. (2020b). Differentiable joint pruning and quantization for hardware efficiency. In: ECCV, pp. 259–277. Wang, Y., Lu, Y., & Blankevoort, T. (2020b). Differentiable joint pruning and quantization for hardware efficiency. In: ECCV, pp. 259–277.
go back to reference Wang, Z., Zheng, Q., Lu, J., & Zhou, J. (2020c). Deep hashing with active pairwise supervision. In: ECCV, pp. 522–538. Wang, Z., Zheng, Q., Lu, J., & Zhou, J. (2020c). Deep hashing with active pairwise supervision. In: ECCV, pp. 522–538.
go back to reference Wang, Z., Jiwen, L., & Zhou, J. (2021). Learning channel-wise interactions for binary convolutional neural networks. TPAMI, 43(10), 3432–3445.CrossRef Wang, Z., Jiwen, L., & Zhou, J. (2021). Learning channel-wise interactions for binary convolutional neural networks. TPAMI, 43(10), 3432–3445.CrossRef
go back to reference Wang, Z., Xiao, H., Lu, J., & Zhou, J. (2021b). Generalizable mixed-precision quantization via attribution rank preservation. In: ICCV, pp. 5291–5300. Wang, Z., Xiao, H., Lu, J., & Zhou, J. (2021b). Generalizable mixed-precision quantization via attribution rank preservation. In: ICCV, pp. 5291–5300.
go back to reference Wang, Z., Jiwen, L., Ziyi, W., & Zhou, J. (2022). Learning efficient binarized object detectors with information compression. TPAMI, 44(6), 3082–3095.CrossRef Wang, Z., Jiwen, L., Ziyi, W., & Zhou, J. (2022). Learning efficient binarized object detectors with information compression. TPAMI, 44(6), 3082–3095.CrossRef
go back to reference Wen, W., Liu, H., Chen, Y., Li, H., Bender, G., & Kindermans, P.-J. (2020). Neural predictor for neural architecture search. In: ECCV, pp. 660–676. Wen, W., Liu, H., Chen, Y., Li, H., Bender, G., & Kindermans, P.-J. (2020). Neural predictor for neural architecture search. In: ECCV, pp. 660–676.
go back to reference Wu, Z., Wang, Z., Wei, Z., Wei, Y., & Yan, H. (2020). Smart explorer: Recognizing objects in dense clutter via interactive exploration. In: IROS, pp. 6600–6607. Wu, Z., Wang, Z., Wei, Z., Wei, Y., & Yan, H. (2020). Smart explorer: Recognizing objects in dense clutter via interactive exploration. In: IROS, pp. 6600–6607.
go back to reference Yang, T.-J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., & Adam, H. (2018). Netadapt: Platform-aware neural network adaptation for mobile applications. In: ECCV, pp. 285–300. Yang, T.-J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., & Adam, H. (2018). Netadapt: Platform-aware neural network adaptation for mobile applications. In: ECCV, pp. 285–300.
go back to reference Yu, H., Han, Q., Li, J., Shi, J., Cheng, G., & Fan, B. (2020). Search what you want: Barrier panelty nas for mixed precision quantization. arXiv preprint arXiv:2007.10026. Yu, H., Han, Q., Li, J., Shi, J., Cheng, G., & Fan, B. (2020). Search what you want: Barrier panelty nas for mixed precision quantization. arXiv preprint arXiv:​2007.​10026.
go back to reference Zhang, D., Yang, J., Ye, D., & Hua, G. (2018). Lq-nets: Learned quantization for highly accurate and compact deep neural networks. In: ECCV, pp. 365–382. Zhang, D., Yang, J., Ye, D., & Hua, G. (2018). Lq-nets: Learned quantization for highly accurate and compact deep neural networks. In: ECCV, pp. 365–382.
Metadata
Title
Learning Accurate Performance Predictors for Ultrafast Automated Model Compression
Authors
Ziwei Wang
Jiwen Lu
Han Xiao
Shengyu Liu
Jie Zhou
Publication date
13-04-2023
Publisher
Springer US
Published in
International Journal of Computer Vision / Issue 7/2023
Print ISSN: 0920-5691
Electronic ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-023-01783-0

Other articles of this Issue 7/2023

International Journal of Computer Vision 7/2023 Go to the issue

Premium Partner