Skip to main content
Erschienen in: International Journal of Computer Vision 7/2023

13.04.2023

Learning Accurate Performance Predictors for Ultrafast Automated Model Compression

verfasst von: Ziwei Wang, Jiwen Lu, Han Xiao, Shengyu Liu, Jie Zhou

Erschienen in: International Journal of Computer Vision | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose an ultrafast automated model compression framework called SeerNet for flexible network deployment. Conventional non-differen-tiable methods discretely search the desirable compression policy based on the accuracy from exhaustively trained lightweight models, and existing differentiable methods optimize an extremely large supernet to obtain the required compressed model for deployment. They both cause heavy computational cost due to the complex compression policy search and evaluation process. On the contrary, we obtain the optimal efficient networks by directly optimizing the compression policy with an accurate performance predictor, where the ultrafast automated model compression for various computational cost constraint is achieved without complex compression policy search and evaluation. Specifically, we first train the performance predictor based on the accuracy from uncertain compression policies actively selected by efficient evolutionary search, so that informative supervision is provided to learn the accurate performance predictor with acceptable cost. Then we leverage the gradient that maximizes the predicted performance under the barrier complexity constraint for ultrafast acquisition of the desirable compression policy, where adaptive update stepsizes with momentum are employed to enhance optimality of the acquired pruning and quantization strategy. Compared with the state-of-the-art automated model compression methods, experimental results on image classification and object detection show that our method achieves competitive accuracy-complexity trade-offs with significant reduction of the search cost. Code is available at https://​github.​com/​ZiweiWangTHU/​SeerNet.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abbasnejad, E.,, Teney, D., Parvaneh, A., Shi, J., & van den Hengel, A. (2020). Counterfactual vision and language learning. In CVPR, pp. 10044–10054. Abbasnejad, E.,, Teney, D., Parvaneh, A., Shi, J., & van den Hengel, A. (2020). Counterfactual vision and language learning. In CVPR, pp. 10044–10054.
Zurück zum Zitat Balcan, M.-F., Broder, A., & Zhang, T. (2007). Margin based active learning. In: COLT, pp. 35–50. Balcan, M.-F., Broder, A., & Zhang, T. (2007). Margin based active learning. In: COLT, pp. 35–50.
Zurück zum Zitat Bell, S., Lawrence, Z. C., Bala, K., & Girshick, R. (2016). Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In: CVPR, pp. 2874–2883. Bell, S., Lawrence, Z. C., Bala, K., & Girshick, R. (2016). Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In: CVPR, pp. 2874–2883.
Zurück zum Zitat Beluch, W. H., Genewein, T., Nürnberger, A., & Köhler, J. M. (2018). The power of ensembles for active learning in image classification. In: CVPR, pp. 9368–9377. Beluch, W. H., Genewein, T., Nürnberger, A., & Köhler, J. M. (2018). The power of ensembles for active learning in image classification. In: CVPR, pp. 9368–9377.
Zurück zum Zitat Bethge, J., Bartz, C., Yang, H., Chen, Y., & Meinel, C. (2020). Meliusnet: Can binary neural networks achieve mobilenet-level accuracy? arXiv preprint arXiv:2001.05936. Bethge, J., Bartz, C., Yang, H., Chen, Y., & Meinel, C. (2020). Meliusnet: Can binary neural networks achieve mobilenet-level accuracy? arXiv preprint arXiv:​2001.​05936.
Zurück zum Zitat Bulat, A., & Tzimiropoulos, G. (2021). Bit-mixer: Mixed-precision networks with runtime bit-width selection. In: ICCV, pp. 5188–5197. Bulat, A., & Tzimiropoulos, G. (2021). Bit-mixer: Mixed-precision networks with runtime bit-width selection. In: ICCV, pp. 5188–5197.
Zurück zum Zitat Cai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2019). Once-for-all: Train one network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791. Cai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2019). Once-for-all: Train one network and specialize it for efficient deployment. arXiv preprint arXiv:​1908.​09791.
Zurück zum Zitat Cai, Z., & Vasconcelos, N. (2020). Rethinking differentiable search for mixed-precision neural networks. In: CVPR, pp. 2349–2358. Cai, Z., & Vasconcelos, N. (2020). Rethinking differentiable search for mixed-precision neural networks. In: CVPR, pp. 2349–2358.
Zurück zum Zitat Chen, G., Choi, W., Yu, X., Han, T., & Chandraker, M. (2017). Learning efficient object detection models with knowledge distillation. In: NIPS, pp. 742–751. Chen, G., Choi, W., Yu, X., Han, T., & Chandraker, M. (2017). Learning efficient object detection models with knowledge distillation. In: NIPS, pp. 742–751.
Zurück zum Zitat Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J., Srinivasan, V., & Gopalakrishnan, K. (2018). Pact: Parameterized clipping activation for quantized neural networks. arXiv preprint arXiv:1805.06085. Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J., Srinivasan, V., & Gopalakrishnan, K. (2018). Pact: Parameterized clipping activation for quantized neural networks. arXiv preprint arXiv:​1805.​06085.
Zurück zum Zitat Dai, X., Zhang, P., Wu, B., Yin, H., Sun, F., Wang, Y., Dukhan, M., Hu, Y., Wu, Y., Jia, Y., et al. (2019). Chamnet: Towards efficient network design through platform-aware model adaptation. In: CVPR, pp. 11398–11407. Dai, X., Zhang, P., Wu, B., Yin, H., Sun, F., Wang, Y., Dukhan, M., Hu, Y., Wu, Y., Jia, Y., et al. (2019). Chamnet: Towards efficient network design through platform-aware model adaptation. In: CVPR, pp. 11398–11407.
Zurück zum Zitat Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In: CVPR, pp. 248–255. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In: CVPR, pp. 248–255.
Zurück zum Zitat Denil, M., Shakibi, B., Dinh, L., De Freitas, N., et al. (2013). Predicting parameters in deep learning. In: NIPS, pp. 2148–2156. Denil, M., Shakibi, B., Dinh, L., De Freitas, N., et al. (2013). Predicting parameters in deep learning. In: NIPS, pp. 2148–2156.
Zurück zum Zitat Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., & Li, J. (2018). Boosting adversarial attacks with momentum. In: CVPR, pp. 9185–9193. Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., & Li, J. (2018). Boosting adversarial attacks with momentum. In: CVPR, pp. 9185–9193.
Zurück zum Zitat Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., & Keutzer, K. (2019). Hawq: Hessian aware quantization of neural networks with mixed-precision. In: ICCV, pp. 293–302. Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., & Keutzer, K. (2019). Hawq: Hessian aware quantization of neural networks with mixed-precision. In: ICCV, pp. 293–302.
Zurück zum Zitat Duch, W., & Korczak, J. (1998). Optimization and global minimization methods suitable for neural networks. Neural Computing Surveys, 2, 163–212. Duch, W., & Korczak, J. (1998). Optimization and global minimization methods suitable for neural networks. Neural Computing Surveys, 2, 163–212.
Zurück zum Zitat Erin Liong, V., Lu, J., Wang, G., Moulin, P., & Zhou, J. (2015). Deep hashing for compact binary codes learning. In: CVPR, pp. 2475–2483. Erin Liong, V., Lu, J., Wang, G., Moulin, P., & Zhou, J. (2015). Deep hashing for compact binary codes learning. In: CVPR, pp. 2475–2483.
Zurück zum Zitat Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., & Modha, D. S. (2019). Learned step size quantization. arXiv preprint arXiv:1902.08153. Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., & Modha, D. S. (2019). Learned step size quantization. arXiv preprint arXiv:​1902.​08153.
Zurück zum Zitat Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (voc) challenge. IJCV, 88(2), 303–338.CrossRef Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (voc) challenge. IJCV, 88(2), 303–338.CrossRef
Zurück zum Zitat Feichtenhofer, C., Fan, H., Malik, J., & He, K. (2019). Slowfast networks for video recognition. In: ICCV, pp. 6202–6211. Feichtenhofer, C., Fan, H., Malik, J., & He, K. (2019). Slowfast networks for video recognition. In: ICCV, pp. 6202–6211.
Zurück zum Zitat Finlay, C., Pooladian, A.-A., & Oberman, A. (2019). The logbarrier adversarial attack: making effective use of decision boundary information. In: ICCV, pp. 4862–4870. Finlay, C., Pooladian, A.-A., & Oberman, A. (2019). The logbarrier adversarial attack: making effective use of decision boundary information. In: ICCV, pp. 4862–4870.
Zurück zum Zitat Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., & Yan, J. (2019). Differentiable soft quantization: Bridging full-precision and low-bit neural networks. arXiv preprint arXiv:1908.05033. Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., & Yan, J. (2019). Differentiable soft quantization: Bridging full-precision and low-bit neural networks. arXiv preprint arXiv:​1908.​05033.
Zurück zum Zitat Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., & Lee, S. (2019). Counterfactual visual explanations. arXiv preprint arXiv:1904.07451. Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., & Lee, S. (2019). Counterfactual visual explanations. arXiv preprint arXiv:​1904.​07451.
Zurück zum Zitat Habi, H. V., Jennings, R. H., & Netzer, A. (2020). Hmq: Hardware friendly mixed precision quantization block for cnns. arXiv preprint arXiv:2007.09952. Habi, H. V., Jennings, R. H., & Netzer, A. (2020). Hmq: Hardware friendly mixed precision quantization block for cnns. arXiv preprint arXiv:​2007.​09952.
Zurück zum Zitat Han, S., Mao, H., & Dally, W. J. (2015a). Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149. Han, S., Mao, H., & Dally, W. J. (2015a). Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:​1510.​00149.
Zurück zum Zitat Han, S., Pool, J., Tran, J., & Dally, W. (2015b). Learning both weights and connections for efficient neural network. In: NIPS, pp. 1135–1143. Han, S., Pool, J., Tran, J., & Dally, W. (2015b). Learning both weights and connections for efficient neural network. In: NIPS, pp. 1135–1143.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: CVPR, pp. 770–778. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: CVPR, pp. 770–778.
Zurück zum Zitat He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018a). Soft filter pruning for accelerating deep convolutional neural networks. arXiv preprint arXiv:1808.06866. He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018a). Soft filter pruning for accelerating deep convolutional neural networks. arXiv preprint arXiv:​1808.​06866.
Zurück zum Zitat He, Y., Zhang, X., & Sun, J. (2017). Channel pruning for accelerating very deep neural networks. In: ICCV, pp. 1389–1397. He, Y., Zhang, X., & Sun, J. (2017). Channel pruning for accelerating very deep neural networks. In: ICCV, pp. 1389–1397.
Zurück zum Zitat He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., & Han, S. (2018b). Amc: Automl for model compression and acceleration on mobile devices. In: ECCV, pp. 784–800. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., & Han, S. (2018b). Amc: Automl for model compression and acceleration on mobile devices. In: ECCV, pp. 784–800.
Zurück zum Zitat Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:​1704.​04861.
Zurück zum Zitat Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks. In: NIPS, pp. 4107–4115. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks. In: NIPS, pp. 4107–4115.
Zurück zum Zitat Jin, Q., Yang, L., & Liao, Z. (2020). Adabits: Neural network quantization with adaptive bit-widths. In: CVPR, pp. 2146–2156. Jin, Q., Yang, L., & Liao, Z. (2020). Adabits: Neural network quantization with adaptive bit-widths. In: CVPR, pp. 2146–2156.
Zurück zum Zitat Joshi, A. J., Porikli, F., & Papanikolopoulos, N. (2009). Multi-class active learning for image classification. In: CVPR, pp. 2372–2379. Joshi, A. J., Porikli, F., & Papanikolopoulos, N. (2009). Multi-class active learning for image classification. In: CVPR, pp. 2372–2379.
Zurück zum Zitat Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.
Zurück zum Zitat Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2016). Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710. Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2016). Pruning filters for efficient convnets. arXiv preprint arXiv:​1608.​08710.
Zurück zum Zitat Li, J., Qi, Q., Wang, J., Ge, C., Li, Y., Yue, Z., & Sun, H. (2019a). Oicsr: Out-in-channel sparsity regularization for compact deep neural networks. In: CVPR, pp. 7046–7055. Li, J., Qi, Q., Wang, J., Ge, C., Li, Y., Yue, Z., & Sun, H. (2019a). Oicsr: Out-in-channel sparsity regularization for compact deep neural networks. In: CVPR, pp. 7046–7055.
Zurück zum Zitat Li, R., Wang, Y., Liang, F., Qin, H., Yan, J., & Fan, R. (2019b). Fully quantized network for object detection. In: CVPR, pp. 2810–2819. Li, R., Wang, Y., Liang, F., Qin, H., Yan, J., & Fan, R. (2019b). Fully quantized network for object detection. In: CVPR, pp. 2810–2819.
Zurück zum Zitat Li, X., & Guo, Y. (2014). Multi-level adaptive active learning for scene classification. In: ECCV, pp. 234–249. Li, X., & Guo, Y. (2014). Multi-level adaptive active learning for scene classification. In: ECCV, pp. 234–249.
Zurück zum Zitat Li, Y., Gu, S., Mayer, C., Van Gool, L., & Timofte, R. (2020a). Group sparsity: The hinge between filter pruning and decomposition for network compression. In: CVPR, pp. 8018–8027. Li, Y., Gu, S., Mayer, C., Van Gool, L., & Timofte, R. (2020a). Group sparsity: The hinge between filter pruning and decomposition for network compression. In: CVPR, pp. 8018–8027.
Zurück zum Zitat Li, Y., Dong, X., & Wei, W. (2020). Additive powers-of-two quantization: A non-uniform discretization for neural networks. ICLR. Li, Y., Dong, X., & Wei, W. (2020). Additive powers-of-two quantization: A non-uniform discretization for neural networks. ICLR.
Zurück zum Zitat Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:​1509.​02971.
Zurück zum Zitat Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Lawrence, Z. C. (2014). Microsoft coco: Common objects in context. In: ECCV, pp. 740–755. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Lawrence, Z. C. (2014). Microsoft coco: Common objects in context. In: ECCV, pp. 740–755.
Zurück zum Zitat Liu, B., Wang, M., Foroosh, H., Tappen, M., & Pensky, M. (2015). Sparse convolutional neural networks. In: CVPR, pp. 806–814. Liu, B., Wang, M., Foroosh, H., Tappen, M., & Pensky, M. (2015). Sparse convolutional neural networks. In: CVPR, pp. 806–814.
Zurück zum Zitat Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. In: ECCV, pp. 21–37. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. In: ECCV, pp. 21–37.
Zurück zum Zitat Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., & Cheng, K.-T. (2018a). Bi-real net: Enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm. In: ECCV, pp. 722–737. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., & Cheng, K.-T. (2018a). Bi-real net: Enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm. In: ECCV, pp. 722–737.
Zurück zum Zitat Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.-T., & Sun, J. (2019). Metapruning: Meta learning for automatic neural network channel pruning. In: ICCV, pp. 3296–3305. Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.-T., & Sun, J. (2019). Metapruning: Meta learning for automatic neural network channel pruning. In: ICCV, pp. 3296–3305.
Zurück zum Zitat Liu, Z., Sun, M., Zhou, T., Huang, G., & Darrell, T. (2018b). Rethinking the value of network pruning. In: ICLR. Liu, Z., Sun, M., Zhou, T., Huang, G., & Darrell, T. (2018b). Rethinking the value of network pruning. In: ICLR.
Zurück zum Zitat Lou, Q., Guo, F., Kim, M., & Liu, L., & Lei, J. (2019). Autoq: Automated kernel-wise neural network quantization. In: ICLR. Lou, Q., Guo, F., Kim, M., & Liu, L., & Lei, J. (2019). Autoq: Automated kernel-wise neural network quantization. In: ICLR.
Zurück zum Zitat Louizos, C., Welling, M., & Kingma, D. P. (2017). Learning sparse neural networks through \( l_0 \) regularization. arXiv preprint arXiv:1712.01312. Louizos, C., Welling, M., & Kingma, D. P. (2017). Learning sparse neural networks through \( l_0 \) regularization. arXiv preprint arXiv:​1712.​01312.
Zurück zum Zitat Louizos, C., Reisser, M., Blankevoort, T., Gavves, E., & Welling, M. (2018). Relaxed quantization for discretized neural networks. arXiv preprint arXiv:1810.01875. Louizos, C., Reisser, M., Blankevoort, T., Gavves, E., & Welling, M. (2018). Relaxed quantization for discretized neural networks. arXiv preprint arXiv:​1810.​01875.
Zurück zum Zitat Luo, W., Schwing, A., & Urtasun, R. (2013). Latent structured active learning. NIPS, 26, 728–736. Luo, W., Schwing, A., & Urtasun, R. (2013). Latent structured active learning. NIPS, 26, 728–736.
Zurück zum Zitat Melville, P., & Mooney, R. J. (2004). Diverse ensembles for active learning. In: ICML. Melville, P., & Mooney, R. J. (2004). Diverse ensembles for active learning. In: ICML.
Zurück zum Zitat Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2016). Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440. Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2016). Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:​1611.​06440.
Zurück zum Zitat Molchanov, P., Mallya, A., Tyree, S., Frosio, I., & Kautz, J. (2019). Importance estimation for neural network pruning. In: CVPR, pp. 11264–11272. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., & Kautz, J. (2019). Importance estimation for neural network pruning. In: CVPR, pp. 11264–11272.
Zurück zum Zitat Peng, H., Wu, J., Chen, S., & Huang, J. (2019). Collaborative channel pruning for deep networks. In: ICML, pp. 5113–5122. Peng, H., Wu, J., Chen, S., & Huang, J. (2019). Collaborative channel pruning for deep networks. In: ICML, pp. 5113–5122.
Zurück zum Zitat Phan, H., Huynh, D., He, Y., Savvides, M., & Shen, Z. (2019). Mobinet: A mobile binary network for image classification. arXiv preprint arXiv:1907.12629. Phan, H., Huynh, D., He, Y., Savvides, M., & Shen, Z. (2019). Mobinet: A mobile binary network for image classification. arXiv preprint arXiv:​1907.​12629.
Zurück zum Zitat Qu, Z., Zhou, Z., Cheng, Y., & Thiele, L. (2020). Adaptive loss-aware quantization for multi-bit networks. In: CVPR, pp. 7988–7997. Qu, Z., Zhou, Z., Cheng, Y., & Thiele, L. (2020). Adaptive loss-aware quantization for multi-bit networks. In: CVPR, pp. 7988–7997.
Zurück zum Zitat Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet classification using binary convolutional neural networks. In: ECCV, pp. 525–542. Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet classification using binary convolutional neural networks. In: ECCV, pp. 525–542.
Zurück zum Zitat Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99.
Zurück zum Zitat Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520.
Zurück zum Zitat Settles, B., & Craven, M. (2008). An analysis of active learning strategies for sequence labeling tasks. In: EMNLP, pp. 1070–1079. Settles, B., & Craven, M. (2008). An analysis of active learning strategies for sequence labeling tasks. In: EMNLP, pp. 1070–1079.
Zurück zum Zitat Siddiqui, Y., Valentin, J., & Nießner, M. (2020). Viewal: Active learning with viewpoint entropy for semantic segmentation. In: CVPR, pp. 9433–9443. Siddiqui, Y., Valentin, J., & Nießner, M. (2020). Viewal: Active learning with viewpoint entropy for semantic segmentation. In: CVPR, pp. 9433–9443.
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556.
Zurück zum Zitat Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. In: ICML, pp. 1139–1147. Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. In: ICML, pp. 1139–1147.
Zurück zum Zitat Uhlich, S., Mauch, L., Yoshiyama, K., Cardinaux, F., Garcia, J. A., Tiedemann, S., Kemp, T., & Nakamura, A. (2019). Differentiable quantization of deep neural networks. arXiv preprint arXiv:1905.11452. Uhlich, S., Mauch, L., Yoshiyama, K., Cardinaux, F., Garcia, J. A., Tiedemann, S., Kemp, T., & Nakamura, A. (2019). Differentiable quantization of deep neural networks. arXiv preprint arXiv:​1905.​11452.
Zurück zum Zitat Vasisht, D., Damianou, A., Varma, M., & Kapoor, A. (2014). Active learning for sparse bayesian multilabel classification. In: KDD, pp. 472–481. Vasisht, D., Damianou, A., Varma, M., & Kapoor, A. (2014). Active learning for sparse bayesian multilabel classification. In: KDD, pp. 472–481.
Zurück zum Zitat Vijayanarasimhan, S., & Grauman, K. (2014). Large-scale live active learning: Training object detectors with crawled data and crowds. IJCV, 108(1–2), 97–114. Vijayanarasimhan, S., & Grauman, K. (2014). Large-scale live active learning: Training object detectors with crawled data and crowds. IJCV, 108(1–2), 97–114.
Zurück zum Zitat Wang, K., Liu, Z., Lin, Y., Lin, J., & Han, S. (2019a). Haq: Hardware-aware automated quantization with mixed precision. In: CVPR, pp. 8612–8620. Wang, K., Liu, Z., Lin, Y., Lin, J., & Han, S. (2019a). Haq: Hardware-aware automated quantization with mixed precision. In: CVPR, pp. 8612–8620.
Zurück zum Zitat Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin, Y., & Han, S. (2020a). Apq: Joint search for network architecture, pruning and quantization policy. In: CVPR, pp. 2078–2087. Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin, Y., & Han, S. (2020a). Apq: Joint search for network architecture, pruning and quantization policy. In: CVPR, pp. 2078–2087.
Zurück zum Zitat Wang, W., Song, H., Zhao, S., Shen, J., Zhao, S., Hoi, S. C. H., & Ling, H. (2019b). Learning unsupervised video object segmentation through visual attention. In: CVPR, pp. 3064–3074. Wang, W., Song, H., Zhao, S., Shen, J., Zhao, S., Hoi, S. C. H., & Ling, H. (2019b). Learning unsupervised video object segmentation through visual attention. In: CVPR, pp. 3064–3074.
Zurück zum Zitat Wang, Y., Lu, Y., & Blankevoort, T. (2020b). Differentiable joint pruning and quantization for hardware efficiency. In: ECCV, pp. 259–277. Wang, Y., Lu, Y., & Blankevoort, T. (2020b). Differentiable joint pruning and quantization for hardware efficiency. In: ECCV, pp. 259–277.
Zurück zum Zitat Wang, Z., Zheng, Q., Lu, J., & Zhou, J. (2020c). Deep hashing with active pairwise supervision. In: ECCV, pp. 522–538. Wang, Z., Zheng, Q., Lu, J., & Zhou, J. (2020c). Deep hashing with active pairwise supervision. In: ECCV, pp. 522–538.
Zurück zum Zitat Wang, Z., Jiwen, L., & Zhou, J. (2021). Learning channel-wise interactions for binary convolutional neural networks. TPAMI, 43(10), 3432–3445.CrossRef Wang, Z., Jiwen, L., & Zhou, J. (2021). Learning channel-wise interactions for binary convolutional neural networks. TPAMI, 43(10), 3432–3445.CrossRef
Zurück zum Zitat Wang, Z., Xiao, H., Lu, J., & Zhou, J. (2021b). Generalizable mixed-precision quantization via attribution rank preservation. In: ICCV, pp. 5291–5300. Wang, Z., Xiao, H., Lu, J., & Zhou, J. (2021b). Generalizable mixed-precision quantization via attribution rank preservation. In: ICCV, pp. 5291–5300.
Zurück zum Zitat Wang, Z., Jiwen, L., Ziyi, W., & Zhou, J. (2022). Learning efficient binarized object detectors with information compression. TPAMI, 44(6), 3082–3095.CrossRef Wang, Z., Jiwen, L., Ziyi, W., & Zhou, J. (2022). Learning efficient binarized object detectors with information compression. TPAMI, 44(6), 3082–3095.CrossRef
Zurück zum Zitat Wen, W., Liu, H., Chen, Y., Li, H., Bender, G., & Kindermans, P.-J. (2020). Neural predictor for neural architecture search. In: ECCV, pp. 660–676. Wen, W., Liu, H., Chen, Y., Li, H., Bender, G., & Kindermans, P.-J. (2020). Neural predictor for neural architecture search. In: ECCV, pp. 660–676.
Zurück zum Zitat Wu, Z., Wang, Z., Wei, Z., Wei, Y., & Yan, H. (2020). Smart explorer: Recognizing objects in dense clutter via interactive exploration. In: IROS, pp. 6600–6607. Wu, Z., Wang, Z., Wei, Z., Wei, Y., & Yan, H. (2020). Smart explorer: Recognizing objects in dense clutter via interactive exploration. In: IROS, pp. 6600–6607.
Zurück zum Zitat Yang, T.-J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., & Adam, H. (2018). Netadapt: Platform-aware neural network adaptation for mobile applications. In: ECCV, pp. 285–300. Yang, T.-J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., & Adam, H. (2018). Netadapt: Platform-aware neural network adaptation for mobile applications. In: ECCV, pp. 285–300.
Zurück zum Zitat Yu, H., Han, Q., Li, J., Shi, J., Cheng, G., & Fan, B. (2020). Search what you want: Barrier panelty nas for mixed precision quantization. arXiv preprint arXiv:2007.10026. Yu, H., Han, Q., Li, J., Shi, J., Cheng, G., & Fan, B. (2020). Search what you want: Barrier panelty nas for mixed precision quantization. arXiv preprint arXiv:​2007.​10026.
Zurück zum Zitat Zhang, D., Yang, J., Ye, D., & Hua, G. (2018). Lq-nets: Learned quantization for highly accurate and compact deep neural networks. In: ECCV, pp. 365–382. Zhang, D., Yang, J., Ye, D., & Hua, G. (2018). Lq-nets: Learned quantization for highly accurate and compact deep neural networks. In: ECCV, pp. 365–382.
Metadaten
Titel
Learning Accurate Performance Predictors for Ultrafast Automated Model Compression
verfasst von
Ziwei Wang
Jiwen Lu
Han Xiao
Shengyu Liu
Jie Zhou
Publikationsdatum
13.04.2023
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 7/2023
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-023-01783-0

Weitere Artikel der Ausgabe 7/2023

International Journal of Computer Vision 7/2023 Zur Ausgabe

S.I. : Physics-Based Vision meets Deep Learning

Adaptive Deep PnP Algorithm for Video Snapshot Compressive Imaging

Premium Partner