Skip to main content
Top

2024 | OriginalPaper | Chapter

Leveraging More of Biology in Evolutionary Reinforcement Learning

Authors : Bruno Gašperov, Marko Đurasević, Domagoj Jakobovic

Published in: Applications of Evolutionary Computation

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we survey the use of additional biologically inspired mechanisms, principles, and concepts in the area of evolutionary reinforcement learning (ERL). While recent years have witnessed the emergence of a swath of metaphor-laden approaches, many merely echo old algorithms through novel metaphors. Simultaneously, numerous promising ideas from evolutionary biology and related areas, ripe for exploitation within evolutionary machine learning, remain in relative obscurity. To address this gap, we provide a comprehensive analysis of innovative, often unorthodox approaches in ERL that leverage additional bio-inspired elements. Furthermore, we pinpoint research directions in the field with the largest potential to yield impactful outcomes and discuss classes of problems that could benefit the most from such research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
It should be noted that ERL also includes approaches in which different state-action pairs are directly explored, as well as meta-RL methods.
 
Literature
1.
go back to reference Aranha, C., et al.: Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intell. 16(1), 1–6 (2022)CrossRef Aranha, C., et al.: Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intell. 16(1), 1–6 (2022)CrossRef
3.
go back to reference Kutschera, U., Niklas, K.J.: The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91, 255–276 (2004)CrossRef Kutschera, U., Niklas, K.J.: The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91, 255–276 (2004)CrossRef
4.
go back to reference Barton, N.H.: The “new synthesis’’. Proc. Nat. Acad. Sci. 119(30), e2122147119 (2022)CrossRef Barton, N.H.: The “new synthesis’’. Proc. Nat. Acad. Sci. 119(30), e2122147119 (2022)CrossRef
5.
go back to reference Yuen, S., Ezard, T.H.G., Sobey, A.J.: Epigenetic opportunities for evolutionary computation. R. Soc. Open Sci. 10(5), 221256 (2023)CrossRef Yuen, S., Ezard, T.H.G., Sobey, A.J.: Epigenetic opportunities for evolutionary computation. R. Soc. Open Sci. 10(5), 221256 (2023)CrossRef
6.
go back to reference Grudniewski, P.A., Sobey, A.J.: cMLSGA: a co-evolutionary multi-level selection genetic algorithm for multi-objective optimization. arXiv preprint arXiv:2104.11072 (2021) Grudniewski, P.A., Sobey, A.J.: cMLSGA: a co-evolutionary multi-level selection genetic algorithm for multi-objective optimization. arXiv preprint arXiv:​2104.​11072 (2021)
7.
go back to reference Barton, N., Paixão, T.: Can quantitative and population genetics help us understand evolutionary computation? In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1573–1580 (2013) Barton, N., Paixão, T.: Can quantitative and population genetics help us understand evolutionary computation? In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1573–1580 (2013)
8.
go back to reference Pontius, J.U., et al.: Initial sequence and comparative analysis of the cat genome. Genome Res. 17(11), 1675–1689 (2007)CrossRef Pontius, J.U., et al.: Initial sequence and comparative analysis of the cat genome. Genome Res. 17(11), 1675–1689 (2007)CrossRef
9.
go back to reference Vassiliades, V., Mouret, J.-B.: Discovering the elite hypervolume by leveraging interspecies correlation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 149–156 (2018) Vassiliades, V., Mouret, J.-B.: Discovering the elite hypervolume by leveraging interspecies correlation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 149–156 (2018)
11.
go back to reference Vie, A., Kleinnijenhuis, A.M., Farmer, D.J.: Qualities, challenges and future of genetic algorithms: a literature review. arXiv preprint arXiv:2011.05277 (2020) Vie, A., Kleinnijenhuis, A.M., Farmer, D.J.: Qualities, challenges and future of genetic algorithms: a literature review. arXiv preprint arXiv:​2011.​05277 (2020)
12.
go back to reference Dagdia, Z.C., Avdeyev, P., Bayzid, M.S.: Biological computation and computational biology: survey, challenges, and discussion. Artif. Intell. Rev. 54, 4169–4235 (2021)CrossRef Dagdia, Z.C., Avdeyev, P., Bayzid, M.S.: Biological computation and computational biology: survey, challenges, and discussion. Artif. Intell. Rev. 54, 4169–4235 (2021)CrossRef
13.
go back to reference Miikkulainen, R., Forrest, S.: A biological perspective on evolutionary computation. Nat. Mach. Intell. 3(1), 9–15 (2021)CrossRef Miikkulainen, R., Forrest, S.: A biological perspective on evolutionary computation. Nat. Mach. Intell. 3(1), 9–15 (2021)CrossRef
14.
go back to reference Silver, D., et al.: Mastering the game of go without human knowledge. nature 550(7676), 354–359 (2017)CrossRef Silver, D., et al.: Mastering the game of go without human knowledge. nature 550(7676), 354–359 (2017)CrossRef
15.
go back to reference Nguyen, H., La, H.: Review of deep reinforcement learning for robot manipulation. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 590–595. IEEE (2019) Nguyen, H., La, H.: Review of deep reinforcement learning for robot manipulation. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 590–595. IEEE (2019)
16.
go back to reference Zhou, S.K., Le, H.N., Luu, K., Nguyen, H.V., Ayache, N.: Deep reinforcement learning in medical imaging: a literature review. Med. Image Anal. 73, 102193 (2021)CrossRef Zhou, S.K., Le, H.N., Luu, K., Nguyen, H.V., Ayache, N.: Deep reinforcement learning in medical imaging: a literature review. Med. Image Anal. 73, 102193 (2021)CrossRef
17.
go back to reference Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017) Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:​1707.​06347 (2017)
18.
go back to reference Qian, H., Yang, Yu.: Derivative-free reinforcement learning: a review. Front. Comp. Sci. 15(6), 156336 (2021)CrossRef Qian, H., Yang, Yu.: Derivative-free reinforcement learning: a review. Front. Comp. Sci. 15(6), 156336 (2021)CrossRef
19.
go back to reference Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017) Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:​1712.​06567 (2017)
20.
go back to reference Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864 (2017) Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:​1703.​03864 (2017)
22.
go back to reference Sun, H., Zhang, W., Runxiang, Yu., Zhang, Y.: Motion planning for mobile robots-focusing on deep reinforcement learning: a systematic review. IEEE Access 9, 69061–69081 (2021)CrossRef Sun, H., Zhang, W., Runxiang, Yu., Zhang, Y.: Motion planning for mobile robots-focusing on deep reinforcement learning: a systematic review. IEEE Access 9, 69061–69081 (2021)CrossRef
23.
go back to reference Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)CrossRef Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)CrossRef
24.
go back to reference Jiang, M., Huang, Z., Qiu, L., Huang, W., Yen, G.G.: Transfer learning-based dynamic multiobjective optimization algorithms. IEEE Trans. Evol. Comput. 22(4), 501–514 (2017)CrossRef Jiang, M., Huang, Z., Qiu, L., Huang, W., Yen, G.G.: Transfer learning-based dynamic multiobjective optimization algorithms. IEEE Trans. Evol. Comput. 22(4), 501–514 (2017)CrossRef
25.
go back to reference Stanley, K.O., Lehman, J., Soros, L.: Open-endedness: the last grand challenge you’ve never heard of (2017) Stanley, K.O., Lehman, J., Soros, L.: Open-endedness: the last grand challenge you’ve never heard of (2017)
26.
go back to reference Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B., Worm, B.: How many species are there on earth and in the ocean? PLoS Biol. 9(8), e1001127 (2011)CrossRef Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B., Worm, B.: How many species are there on earth and in the ocean? PLoS Biol. 9(8), e1001127 (2011)CrossRef
27.
go back to reference Rasmussen, S., Sibani, P.: Two modes of evolution: optimization and expansion. Artif. Life 25(1), 9–21 (2019)CrossRef Rasmussen, S., Sibani, P.: Two modes of evolution: optimization and expansion. Artif. Life 25(1), 9–21 (2019)CrossRef
28.
go back to reference Packard, N., et al.: An overview of open-ended evolution: editorial introduction to the open-ended evolution ii special issue. Artif. Life 25(2), 93–103 (2019)CrossRef Packard, N., et al.: An overview of open-ended evolution: editorial introduction to the open-ended evolution ii special issue. Artif. Life 25(2), 93–103 (2019)CrossRef
30.
go back to reference Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)CrossRef Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)CrossRef
31.
go back to reference Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of quality diversity. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 967–974 (2015) Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of quality diversity. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 967–974 (2015)
32.
go back to reference Earle, S., Snider, J., Fontaine, M.C., Nikolaidis, S., Togelius, J.: Illuminating diverse neural cellular automata for level generation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 68–76 (2022) Earle, S., Snider, J., Fontaine, M.C., Nikolaidis, S., Togelius, J.: Illuminating diverse neural cellular automata for level generation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 68–76 (2022)
33.
go back to reference Chand, S., Howard, D.: Path towards multilevel evolution of robots. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 1381–1382 (2020) Chand, S., Howard, D.: Path towards multilevel evolution of robots. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 1381–1382 (2020)
35.
go back to reference Riederer, J.M., Tiso, S., van Eldijk, T.J.B., Weissing, F.J.: Capturing the facets of evolvability in a mechanistic framework. Trends Ecol. Evol. 37(5), 430–439 (2022)CrossRef Riederer, J.M., Tiso, S., van Eldijk, T.J.B., Weissing, F.J.: Capturing the facets of evolvability in a mechanistic framework. Trends Ecol. Evol. 37(5), 430–439 (2022)CrossRef
36.
go back to reference Dawkins, R.: The evolution of evolvability. In: Artificial Life, pp. 201–220. Routledge (2019) Dawkins, R.: The evolution of evolvability. In: Artificial Life, pp. 201–220. Routledge (2019)
37.
go back to reference Watson, R.A., Szathmáry, E.: How can evolution learn? Trends Ecol. Evol. 31(2), 147–157 (2016)CrossRef Watson, R.A., Szathmáry, E.: How can evolution learn? Trends Ecol. Evol. 31(2), 147–157 (2016)CrossRef
38.
go back to reference Lehman, J., Stanley, K.O.: Evolvability is inevitable: increasing evolvability without the pressure to adapt. PLoS ONE 8(4), e62186 (2013)CrossRef Lehman, J., Stanley, K.O.: Evolvability is inevitable: increasing evolvability without the pressure to adapt. PLoS ONE 8(4), e62186 (2013)CrossRef
39.
go back to reference Mengistu, H., Lehman, J., Clune, J.: Evolvability search: directly selecting for evolvability in order to study and produce it. In: 2016 Proceedings of the Genetic and Evolutionary Computation Conference, pp. 141–148 (2016) Mengistu, H., Lehman, J., Clune, J.: Evolvability search: directly selecting for evolvability in order to study and produce it. In: 2016 Proceedings of the Genetic and Evolutionary Computation Conference, pp. 141–148 (2016)
40.
go back to reference Gajewski, A., Clune, J., Stanley, K.O., Lehman, J.: Evolvability ES: scalable and direct optimization of evolvability. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 107–115 (2019) Gajewski, A., Clune, J., Stanley, K.O., Lehman, J.: Evolvability ES: scalable and direct optimization of evolvability. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 107–115 (2019)
41.
go back to reference Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017) Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)
42.
go back to reference Katona, A., Franks, D.W., Walker, J.A.: Quality evolvability ES: evolving individuals with a distribution of well performing and diverse offspring. In: The 2022 Conference on Artificial Life, ALIFE 2022. MIT Press (2021) Katona, A., Franks, D.W., Walker, J.A.: Quality evolvability ES: evolving individuals with a distribution of well performing and diverse offspring. In: The 2022 Conference on Artificial Life, ALIFE 2022. MIT Press (2021)
43.
go back to reference Gašperov, B., Đurasević, M.: On evolvability and behavior landscapes in neuroevolutionary divergent search. arXiv preprint arXiv:2306.09849 (2023) Gašperov, B., Đurasević, M.: On evolvability and behavior landscapes in neuroevolutionary divergent search. arXiv preprint arXiv:​2306.​09849 (2023)
44.
go back to reference Doncieux, S., Paolo, G., Laflaquière, A., Coninx, A.: Novelty search makes evolvability inevitable. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 85–93 (2020) Doncieux, S., Paolo, G., Laflaquière, A., Coninx, A.: Novelty search makes evolvability inevitable. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 85–93 (2020)
45.
go back to reference Shorten, D., Nitschke, G.: How evolvable is novelty search? In: 2014 IEEE International Conference on Evolvable Systems, pp. 125–132. IEEE (2014) Shorten, D., Nitschke, G.: How evolvable is novelty search? In: 2014 IEEE International Conference on Evolvable Systems, pp. 125–132. IEEE (2014)
46.
go back to reference Medvet, E., Daolio, F., Tagliapietra, D.: Evolvability in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 977–984 (2017) Medvet, E., Daolio, F., Tagliapietra, D.: Evolvability in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 977–984 (2017)
47.
go back to reference Liu, D., Virgolin, M., Alderliesten, T., Bosman, P.A.N.: Evolvability degeneration in multi-objective genetic programming for symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 973–981 (2022) Liu, D., Virgolin, M., Alderliesten, T., Bosman, P.A.N.: Evolvability degeneration in multi-objective genetic programming for symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 973–981 (2022)
48.
go back to reference Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Computat. 11(1), 1–18 (2003)CrossRef Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Computat. 11(1), 1–18 (2003)CrossRef
50.
go back to reference Krause, O., Arbonès, D.R., Igel, C.: CMA-ES with optimal covariance update and storage complexity. In: Advances in Neural Information Processing Systems, vol. 29 (2016) Krause, O., Arbonès, D.R., Igel, C.: CMA-ES with optimal covariance update and storage complexity. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
51.
go back to reference Heidrich-Meisner, V., Igel, C.: Uncertainty handling CMA-ES for reinforcement learning. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1211–1218 (2009) Heidrich-Meisner, V., Igel, C.: Uncertainty handling CMA-ES for reinforcement learning. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1211–1218 (2009)
52.
go back to reference Branke, J., Mattfeld, D.C.: Anticipation and flexibility in dynamic scheduling. Int. J. Prod. Res. 43(15), 3103–3129 (2005)CrossRef Branke, J., Mattfeld, D.C.: Anticipation and flexibility in dynamic scheduling. Int. J. Prod. Res. 43(15), 3103–3129 (2005)CrossRef
53.
go back to reference Pinto, L., Davidson, J., Sukthankar, R., Gupta, A.: Robust adversarial reinforcement learning. In: International Conference on Machine Learning, pp. 2817–2826. PMLR (2017) Pinto, L., Davidson, J., Sukthankar, R., Gupta, A.: Robust adversarial reinforcement learning. In: International Conference on Machine Learning, pp. 2817–2826. PMLR (2017)
54.
go back to reference Masel, J., Trotter, M.V.: Robustness and evolvability. Trends Genet. 26(9), 406–414 (2010)CrossRef Masel, J., Trotter, M.V.: Robustness and evolvability. Trends Genet. 26(9), 406–414 (2010)CrossRef
55.
go back to reference Wagner, A.: Robustness and evolvability: a paradox resolved. Proc. R. Soc. B Biol. Sci. 275(1630), 91–100 (2008)CrossRef Wagner, A.: Robustness and evolvability: a paradox resolved. Proc. R. Soc. B Biol. Sci. 275(1630), 91–100 (2008)CrossRef
56.
go back to reference Spencer, C.C.A., et al.: The influence of recombination on human genetic diversity. PLoS Genet. 2(9), e148 (2006)CrossRef Spencer, C.C.A., et al.: The influence of recombination on human genetic diversity. PLoS Genet. 2(9), e148 (2006)CrossRef
57.
go back to reference Zainuddin, F.A., Samad, Md.F.A., Tunggal, D.: A review of crossover methods and problem representation of genetic algorithm in recent engineering applications. Int. J. Adv. Sci. Technol. 29(6s), 759–769 (2020) Zainuddin, F.A., Samad, Md.F.A., Tunggal, D.: A review of crossover methods and problem representation of genetic algorithm in recent engineering applications. Int. J. Adv. Sci. Technol. 29(6s), 759–769 (2020)
58.
go back to reference Paixão, T., Barton, N.: A variance decomposition approach to the analysis of genetic algorithms. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 845–852 (2013) Paixão, T., Barton, N.: A variance decomposition approach to the analysis of genetic algorithms. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 845–852 (2013)
60.
go back to reference Mitchell, M., Holland, J.H., Forrest, S.: The royal road for genetic algorithms: fitness landscapes and GA performance. Technical report, Los Alamos National Lab., NM (United States) (1991) Mitchell, M., Holland, J.H., Forrest, S.: The royal road for genetic algorithms: fitness landscapes and GA performance. Technical report, Los Alamos National Lab., NM (United States) (1991)
61.
go back to reference Polani, D., Miikkulainen, R.: Fast reinforcement learning through eugenic neuro-evolution, pp. 99–277. The University of Texas at Austin, AI (1999) Polani, D., Miikkulainen, R.: Fast reinforcement learning through eugenic neuro-evolution, pp. 99–277. The University of Texas at Austin, AI (1999)
62.
go back to reference Polani, D., Miikkulainen, R.: Eugenic neuro-evolution for reinforcement learning. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, pp. 1041–1046 (2000) Polani, D., Miikkulainen, R.: Eugenic neuro-evolution for reinforcement learning. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, pp. 1041–1046 (2000)
63.
go back to reference Ventresca, M., Ombuki-Berman, B.: Epistasis in multi-objective evolutionary recurrent neuro-controllers. In: 2007 IEEE Symposium on Artificial Life, pp. 77–84. IEEE (2007) Ventresca, M., Ombuki-Berman, B.: Epistasis in multi-objective evolutionary recurrent neuro-controllers. In: 2007 IEEE Symposium on Artificial Life, pp. 77–84. IEEE (2007)
65.
go back to reference Huizinga, J., Stanley, K.O., Clune, J.: The emergence of canalization and evolvability in an open-ended, interactive evolutionary system. Artif. Life 24(3), 157–181 (2018)CrossRef Huizinga, J., Stanley, K.O., Clune, J.: The emergence of canalization and evolvability in an open-ended, interactive evolutionary system. Artif. Life 24(3), 157–181 (2018)CrossRef
66.
go back to reference Katona, A., Lourenço, N., Machado, P., Franks, D.W., Walker, J.A.: Utilizing the untapped potential of indirect encoding for neural networks with meta learning. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 537–551. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_34CrossRef Katona, A., Lourenço, N., Machado, P., Franks, D.W., Walker, J.A.: Utilizing the untapped potential of indirect encoding for neural networks with meta learning. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 537–551. Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-72699-7_​34CrossRef
67.
go back to reference Wang, R., et al.: Enhanced poet: open-ended reinforcement learning through unbounded invention of learning challenges and their solutions. In: International Conference on Machine Learning, pp. 9940–9951. PMLR (2020) Wang, R., et al.: Enhanced poet: open-ended reinforcement learning through unbounded invention of learning challenges and their solutions. In: International Conference on Machine Learning, pp. 9940–9951. PMLR (2020)
68.
go back to reference Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2014)CrossRef Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2014)CrossRef
69.
go back to reference Rand, W.: Genetic Algorithms in Dynamic and Coevolving Environments. Ph.D. thesis. Citeseer Rand, W.: Genetic Algorithms in Dynamic and Coevolving Environments. Ph.D. thesis. Citeseer
70.
go back to reference Bedau, M.A., Packard, N.H.: Evolution of evolvability via adaptation of mutation rates. Biosystems 69(2–3), 143–162 (2003)CrossRef Bedau, M.A., Packard, N.H.: Evolution of evolvability via adaptation of mutation rates. Biosystems 69(2–3), 143–162 (2003)CrossRef
71.
go back to reference Aleti, A.: An adaptive approach to controlling parameters of evolutionary algorithms. Swinburne University of Technology (2012) Aleti, A.: An adaptive approach to controlling parameters of evolutionary algorithms. Swinburne University of Technology (2012)
72.
go back to reference Xu, K., Ma, Y., Li, W.: Dynamics-aware novelty search with behavior repulsion. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1112–1120 (2022) Xu, K., Ma, Y., Li, W.: Dynamics-aware novelty search with behavior repulsion. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1112–1120 (2022)
73.
go back to reference Weber, M., Schübeler, D.: Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr. Opin. Cell Biol. 19(3), 273–280 (2007)CrossRef Weber, M., Schübeler, D.: Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr. Opin. Cell Biol. 19(3), 273–280 (2007)CrossRef
74.
go back to reference Turner, B.M.: Histone acetylation and an epigenetic code. BioEssays 22(9), 836–845 (2000)CrossRef Turner, B.M.: Histone acetylation and an epigenetic code. BioEssays 22(9), 836–845 (2000)CrossRef
75.
go back to reference Hu, T.: Evolvability and rate of evolution in evolutionary computation. Ph.D. thesis, Memorial University of Newfoundland (2010) Hu, T.: Evolvability and rate of evolution in evolutionary computation. Ph.D. thesis, Memorial University of Newfoundland (2010)
76.
go back to reference Wang, Y., Liu, H., Sun, Z.: Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol. Rev. 92(4), 2084–2111 (2017)CrossRef Wang, Y., Liu, H., Sun, Z.: Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol. Rev. 92(4), 2084–2111 (2017)CrossRef
77.
go back to reference Mukhlish, F., Page, J., Bain, M.: Reward-based epigenetic learning algorithm for a decentralised multi-agent system. Int. J. Intell. Unmanned Syst. 8(3), 201–224 (2020)CrossRef Mukhlish, F., Page, J., Bain, M.: Reward-based epigenetic learning algorithm for a decentralised multi-agent system. Int. J. Intell. Unmanned Syst. 8(3), 201–224 (2020)CrossRef
78.
go back to reference Mukhlish, F., Page, J., Bain, M.: From reward to histone: combining temporal-difference learning and epigenetic inheritance for swarm’s coevolving decision making. In: 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 1–6. IEEE (2020) Mukhlish, F., Page, J., Bain, M.: From reward to histone: combining temporal-difference learning and epigenetic inheritance for swarm’s coevolving decision making. In: 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 1–6. IEEE (2020)
79.
go back to reference Page, J., Armstrong, R., Mukhlish, F.: Simulating search and rescue operations using swarm technology to determine how many searchers are needed to locate missing persons/objects in the shortest time. In: Naweed, A., Bowditch, L., Sprick, C. (eds.) ASC 2019. CCIS, vol. 1067, pp. 106–112. Springer, Singapore (2019). https://doi.org/10.1007/978-981-32-9582-7_8CrossRef Page, J., Armstrong, R., Mukhlish, F.: Simulating search and rescue operations using swarm technology to determine how many searchers are needed to locate missing persons/objects in the shortest time. In: Naweed, A., Bowditch, L., Sprick, C. (eds.) ASC 2019. CCIS, vol. 1067, pp. 106–112. Springer, Singapore (2019). https://​doi.​org/​10.​1007/​978-981-32-9582-7_​8CrossRef
81.
go back to reference Boyko, A., Kovalchuk, I.: Epigenetic control of plant stress response. Environ. Mol. Mutagen. 49(1), 61–72 (2008)CrossRef Boyko, A., Kovalchuk, I.: Epigenetic control of plant stress response. Environ. Mol. Mutagen. 49(1), 61–72 (2008)CrossRef
82.
go back to reference Khetarpal, K., Riemer, M., Rish, I., Precup, D.: Towards continual reinforcement learning: a review and perspectives. J. Artif. Intell. Res. 75, 1401–1476 (2022)MathSciNetCrossRef Khetarpal, K., Riemer, M., Rish, I., Precup, D.: Towards continual reinforcement learning: a review and perspectives. J. Artif. Intell. Res. 75, 1401–1476 (2022)MathSciNetCrossRef
83.
go back to reference Zhou, H., Lan, J., Liu, R., Yosinski, J.: Deconstructing lottery tickets: zeros, signs, and the supermask. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Zhou, H., Lan, J., Liu, R., Yosinski, J.: Deconstructing lottery tickets: zeros, signs, and the supermask. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
84.
go back to reference Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., Rastegari, M.: What’s hidden in a randomly weighted neural network? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11893–11902 (2020) Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., Rastegari, M.: What’s hidden in a randomly weighted neural network? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11893–11902 (2020)
85.
go back to reference Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018) Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. arXiv preprint arXiv:​1803.​03635 (2018)
86.
go back to reference Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)CrossRef Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)CrossRef
88.
go back to reference Dal Piccol Sotto, L.F., Mayer, S., Garcke, J.: The pole balancing problem from the viewpoint of system flexibility. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 427–430 (2022) Dal Piccol Sotto, L.F., Mayer, S., Garcke, J.: The pole balancing problem from the viewpoint of system flexibility. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 427–430 (2022)
89.
go back to reference Galván-López, E., Poli, R., Kattan, A., O’Neill, M., Brabazon, A.: Neutrality in evolutionary algorithms\(\ldots \) what do we know? Evol. Syst. 2, 145–163 (2011)CrossRef Galván-López, E., Poli, R., Kattan, A., O’Neill, M., Brabazon, A.: Neutrality in evolutionary algorithms\(\ldots \) what do we know? Evol. Syst. 2, 145–163 (2011)CrossRef
90.
go back to reference Odling-Smee, F.J., Laland, K.N., Feldman, M.W.: Niche Construction: The Neglected Process in Evolution (MPB-37). Princeton University Press (2013) Odling-Smee, F.J., Laland, K.N., Feldman, M.W.: Niche Construction: The Neglected Process in Evolution (MPB-37). Princeton University Press (2013)
91.
go back to reference Flynn, E.G., Laland, K.N., Kendal, R.L., Kendal, J.R.: Target article with commentaries: developmental niche construction. Dev. Sci. 16(2), 296–313 (2013)CrossRef Flynn, E.G., Laland, K.N., Kendal, R.L., Kendal, J.R.: Target article with commentaries: developmental niche construction. Dev. Sci. 16(2), 296–313 (2013)CrossRef
92.
go back to reference Dawkins, R.: The Extended Phenotype: The Long Reach of the Gene. Oxford University Press (2016) Dawkins, R.: The Extended Phenotype: The Long Reach of the Gene. Oxford University Press (2016)
93.
go back to reference Millhouse, T., Moses, M., Mitchell, M.: Frontiers in evolutionary computation: a workshop report. arXiv preprint arXiv:2110.10320 (2021) Millhouse, T., Moses, M., Mitchell, M.: Frontiers in evolutionary computation: a workshop report. arXiv preprint arXiv:​2110.​10320 (2021)
94.
go back to reference Perolat, J., Leibo, J.Z., Zambaldi, V., Beattie, C., Tuyls, K., Graepel, T.: A multi-agent reinforcement learning model of common-pool resource appropriation. In: Advances in Neural Information Processing Systems, vol. 30 (2017) Perolat, J., Leibo, J.Z., Zambaldi, V., Beattie, C., Tuyls, K., Graepel, T.: A multi-agent reinforcement learning model of common-pool resource appropriation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
96.
go back to reference Hamon, G., Nisioti, E., Moulin-Frier, C.: Eco-evolutionary dynamics of non-episodic neuroevolution in large multi-agent environments. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 143–146 (2023) Hamon, G., Nisioti, E., Moulin-Frier, C.: Eco-evolutionary dynamics of non-episodic neuroevolution in large multi-agent environments. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 143–146 (2023)
97.
go back to reference Berseth, G., et al.: SMiRL: surprise minimizing reinforcement learning in unstable environments. arXiv preprint arXiv:1912.05510 (2019) Berseth, G., et al.: SMiRL: surprise minimizing reinforcement learning in unstable environments. arXiv preprint arXiv:​1912.​05510 (2019)
98.
go back to reference Friston, K.: The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13(7), 293–301 (2009)CrossRef Friston, K.: The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13(7), 293–301 (2009)CrossRef
99.
go back to reference Lipson, H., et al.: Principles of modularity, regularity, and hierarchy for scalable systems. J. Biol. Phys. Chem. 7(4), 125 (2007)CrossRef Lipson, H., et al.: Principles of modularity, regularity, and hierarchy for scalable systems. J. Biol. Phys. Chem. 7(4), 125 (2007)CrossRef
100.
go back to reference Mengistu, H., Huizinga, J., Mouret, J.-B., Clune, J.: The evolutionary origins of hierarchy. PLoS Comput. Biol. 12(6), e1004829 (2016)CrossRef Mengistu, H., Huizinga, J., Mouret, J.-B., Clune, J.: The evolutionary origins of hierarchy. PLoS Comput. Biol. 12(6), e1004829 (2016)CrossRef
101.
go back to reference Clune, J., Mouret, J.-B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B Biol. Sci. 280(1755), 20122863 (2013)CrossRef Clune, J., Mouret, J.-B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B Biol. Sci. 280(1755), 20122863 (2013)CrossRef
102.
go back to reference Hutsebaut-Buysse, M., Mets, K., Latré, S.: Hierarchical reinforcement learning: a survey and open research challenges. Mach. Learn. Knowl. Extr. 4(1), 172–221 (2022)CrossRef Hutsebaut-Buysse, M., Mets, K., Latré, S.: Hierarchical reinforcement learning: a survey and open research challenges. Mach. Learn. Knowl. Extr. 4(1), 172–221 (2022)CrossRef
103.
go back to reference Abramowitz, S., Nitschke, G.: Scalable evolutionary hierarchical reinforcement learning. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 272–275 (2022) Abramowitz, S., Nitschke, G.: Scalable evolutionary hierarchical reinforcement learning. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 272–275 (2022)
104.
go back to reference Hansen, T.F.: The evolution of genetic architecture. Annu. Rev. Ecol. Evol. Syst. 37, 123–157 (2006)CrossRef Hansen, T.F.: The evolution of genetic architecture. Annu. Rev. Ecol. Evol. Syst. 37, 123–157 (2006)CrossRef
106.
go back to reference Smith, S.D., Pennell, M.W., Dunn, C.W., Edwards, S.V.: Phylogenetics is the new genetics (for most of biodiversity). Trends Ecol. Evol. 35(5), 415–425 (2020)CrossRef Smith, S.D., Pennell, M.W., Dunn, C.W., Edwards, S.V.: Phylogenetics is the new genetics (for most of biodiversity). Trends Ecol. Evol. 35(5), 415–425 (2020)CrossRef
108.
go back to reference Cussat-Blanc, S., Harrington, K., Pollack, J.: Gene regulatory network evolution through augmenting topologies. IEEE Trans. Evol. Comput. 19(6), 823–837 (2015)CrossRef Cussat-Blanc, S., Harrington, K., Pollack, J.: Gene regulatory network evolution through augmenting topologies. IEEE Trans. Evol. Comput. 19(6), 823–837 (2015)CrossRef
109.
go back to reference Dolson, E., Ofria, C.: Ecological theory provides insights about evolutionary computation. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 105–106 (2018) Dolson, E., Ofria, C.: Ecological theory provides insights about evolutionary computation. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 105–106 (2018)
110.
go back to reference Moreno, M.A., Dolson, E., Rodriguez-Papa, S.: Toward phylogenetic inference of evolutionary dynamics at scale. In: Artificial Life Conference Proceedings 35, vol. 2023, p. 79 (2023) Moreno, M.A., Dolson, E., Rodriguez-Papa, S.: Toward phylogenetic inference of evolutionary dynamics at scale. In: Artificial Life Conference Proceedings 35, vol. 2023, p. 79 (2023)
111.
112.
go back to reference Salehi, A., Coninx, A., Doncieux, S.: Few-shot quality-diversity optimization. IEEE Robot. Autom. Lett. 7(2), 4424–4431 (2022)CrossRef Salehi, A., Coninx, A., Doncieux, S.: Few-shot quality-diversity optimization. IEEE Robot. Autom. Lett. 7(2), 4424–4431 (2022)CrossRef
113.
go back to reference Rainford, P.F., Porter, B.: Using phylogenetic analysis to enhance genetic improvement. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 849–857 (2022) Rainford, P.F., Porter, B.: Using phylogenetic analysis to enhance genetic improvement. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 849–857 (2022)
114.
go back to reference Knapp, J.S., Peterson, G.L.: Natural evolution speciation for NEAT. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1487–1493. IEEE (2019) Knapp, J.S., Peterson, G.L.: Natural evolution speciation for NEAT. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1487–1493. IEEE (2019)
115.
go back to reference Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRef Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRef
116.
go back to reference Dixit, G.: Learning to coordinate in sparse asymmetric multiagent systems (2023) Dixit, G.: Learning to coordinate in sparse asymmetric multiagent systems (2023)
118.
go back to reference Turney, P., Whitley, D., Anderson, R.W.: Evolution, learning, and instinct: 100 years of the Baldwin effect. Evol. Comput. 4(3), iv–viii (1996) Turney, P., Whitley, D., Anderson, R.W.: Evolution, learning, and instinct: 100 years of the Baldwin effect. Evol. Comput. 4(3), iv–viii (1996)
119.
go back to reference Abrantes, J.P., Abrantes, A.J., Oliehoek, F.A.: Mimicking evolution with reinforcement learning. arXiv preprint arXiv:2004.00048 (2020) Abrantes, J.P., Abrantes, A.J., Oliehoek, F.A.: Mimicking evolution with reinforcement learning. arXiv preprint arXiv:​2004.​00048 (2020)
120.
go back to reference Stanton, C., Clune, J.: Curiosity search: producing generalists by encouraging individuals to continually explore and acquire skills throughout their lifetime. PLoS ONE 11(9), e0162235 (2016)CrossRef Stanton, C., Clune, J.: Curiosity search: producing generalists by encouraging individuals to continually explore and acquire skills throughout their lifetime. PLoS ONE 11(9), e0162235 (2016)CrossRef
121.
122.
go back to reference Schmidgall, S.: Adaptive reinforcement learning through evolving self-modifying neural networks. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 89–90 (2020) Schmidgall, S.: Adaptive reinforcement learning through evolving self-modifying neural networks. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 89–90 (2020)
123.
go back to reference Yaman, A., Iacca, G., Mocanu, D.C., Coler, M., Fletcher, G., Pechenizkiy, M.: Evolving plasticity for autonomous learning under changing environmental conditions. Evol. Comput. 29(3), 391–414 (2021)CrossRef Yaman, A., Iacca, G., Mocanu, D.C., Coler, M., Fletcher, G., Pechenizkiy, M.: Evolving plasticity for autonomous learning under changing environmental conditions. Evol. Comput. 29(3), 391–414 (2021)CrossRef
124.
go back to reference Davies, A.: On the interaction of function, constraint and complexity in evolutionary systems. Ph.D. thesis, University of Southampton (2014) Davies, A.: On the interaction of function, constraint and complexity in evolutionary systems. Ph.D. thesis, University of Southampton (2014)
125.
go back to reference Macallum, A.B.: The paleochemistry of the body fluids and tissues. Physiol. Rev. 6(2), 316–357 (1926)CrossRef Macallum, A.B.: The paleochemistry of the body fluids and tissues. Physiol. Rev. 6(2), 316–357 (1926)CrossRef
127.
go back to reference Stickland, A.C., Murray, I.: BERT and PALs: projected attention layers for efficient adaptation in multi-task learning. In: International Conference on Machine Learning, pp. 5986–5995. PMLR (2019) Stickland, A.C., Murray, I.: BERT and PALs: projected attention layers for efficient adaptation in multi-task learning. In: International Conference on Machine Learning, pp. 5986–5995. PMLR (2019)
128.
go back to reference Sunagawa, J., Yamaguchi, R., Nakaoka, S.: Evolving neural networks through bio-inspired parent selection in dynamic environments. Biosystems 218, 104686 (2022)CrossRef Sunagawa, J., Yamaguchi, R., Nakaoka, S.: Evolving neural networks through bio-inspired parent selection in dynamic environments. Biosystems 218, 104686 (2022)CrossRef
129.
go back to reference Tang, Y., Nguyen, D., Ha, D.: Neuroevolution of self-interpretable agents. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 414–424 (2020) Tang, Y., Nguyen, D., Ha, D.: Neuroevolution of self-interpretable agents. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 414–424 (2020)
130.
go back to reference Gaier, A., Ha, D.: Weight agnostic neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Gaier, A., Ha, D.: Weight agnostic neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
131.
go back to reference Freeman, D., Ha, D., Metz, L.: Learning to predict without looking ahead: world models without forward prediction. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Freeman, D., Ha, D., Metz, L.: Learning to predict without looking ahead: world models without forward prediction. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
132.
go back to reference Fisher, R.A.: XV.-the correlation between relatives on the supposition of mendelian inheritance. Earth Environ. Sci. Trans. R. Soc. Edinburgh 52(2), 399–433 (1919) Fisher, R.A.: XV.-the correlation between relatives on the supposition of mendelian inheritance. Earth Environ. Sci. Trans. R. Soc. Edinburgh 52(2), 399–433 (1919)
133.
go back to reference Smith, D., Tokarchuk, L., Wiggins, G.: Exploring conflicting objectives with MADNS: multiple assessment directed novelty search. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 23–24 (2016) Smith, D., Tokarchuk, L., Wiggins, G.: Exploring conflicting objectives with MADNS: multiple assessment directed novelty search. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 23–24 (2016)
134.
go back to reference Smith, D., Tokarchuk, L., Wiggins, G.: Harnessing phenotypic diversity towards multiple independent objectives. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 961–968 (2016) Smith, D., Tokarchuk, L., Wiggins, G.: Harnessing phenotypic diversity towards multiple independent objectives. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 961–968 (2016)
135.
go back to reference Uiterwaal, S.F., Lagerstrom, I.T., Luhring, T.M., Salsbery, M.E., DeLong, J.P.: Trade-offs between morphology and thermal niches mediate adaptation in response to competing selective pressures. Ecol. Evol. 10(3), 1368–1377 (2020)CrossRef Uiterwaal, S.F., Lagerstrom, I.T., Luhring, T.M., Salsbery, M.E., DeLong, J.P.: Trade-offs between morphology and thermal niches mediate adaptation in response to competing selective pressures. Ecol. Evol. 10(3), 1368–1377 (2020)CrossRef
136.
go back to reference Walsh, B.: Crops can be strong and sensitive. Nat. Plants 3(9), 694–695 (2017)CrossRef Walsh, B.: Crops can be strong and sensitive. Nat. Plants 3(9), 694–695 (2017)CrossRef
137.
go back to reference Ofria, C., Adami, C., Collier, T.C.: Selective pressures on genomes in molecular evolution. J. Theoret. Biol. 222(4), 477–483 (2003)MathSciNetCrossRef Ofria, C., Adami, C., Collier, T.C.: Selective pressures on genomes in molecular evolution. J. Theoret. Biol. 222(4), 477–483 (2003)MathSciNetCrossRef
138.
go back to reference Back, T.: Selective pressure in evolutionary algorithms: a characterization of selection mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp. 57–62. IEEE (1994) Back, T.: Selective pressure in evolutionary algorithms: a characterization of selection mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp. 57–62. IEEE (1994)
140.
go back to reference Gottlieb, J., Oudeyer, P.-Y.: Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19(12), 758–770 (2018)CrossRef Gottlieb, J., Oudeyer, P.-Y.: Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19(12), 758–770 (2018)CrossRef
142.
go back to reference Santucci, V.G., Oudeyer, P.-Y., Barto, A., Baldassarre, G.: Intrinsically motivated open-ended learning in autonomous robots. Front. Neurorobot. 3, 115 (2020) CrossRef Santucci, V.G., Oudeyer, P.-Y., Barto, A., Baldassarre, G.: Intrinsically motivated open-ended learning in autonomous robots. Front. Neurorobot. 3, 115 (2020) CrossRef
143.
go back to reference Colas, C., Karch, T., Sigaud, O., Oudeyer, P.-Y.: Autotelic agents with intrinsically motivated goal-conditioned reinforcement learning: a short survey. J. Artif. Intell. Res. 74, 1159–1199 (2022)MathSciNetCrossRef Colas, C., Karch, T., Sigaud, O., Oudeyer, P.-Y.: Autotelic agents with intrinsically motivated goal-conditioned reinforcement learning: a short survey. J. Artif. Intell. Res. 74, 1159–1199 (2022)MathSciNetCrossRef
144.
go back to reference Georgeon, O.L., Marshall, J.B., Gay, S.: Interactional motivation in artificial systems: between extrinsic and intrinsic motivation. In: 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 1–2. IEEE (2012) Georgeon, O.L., Marshall, J.B., Gay, S.: Interactional motivation in artificial systems: between extrinsic and intrinsic motivation. In: 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 1–2. IEEE (2012)
145.
go back to reference Reinitz, J., Vakulenko, S., Grigoriev, D., Weber, A.: Adaptation, fitness landscape learning and fast evolution. F1000Research 8, 358 (2019) Reinitz, J., Vakulenko, S., Grigoriev, D., Weber, A.: Adaptation, fitness landscape learning and fast evolution. F1000Research 8, 358 (2019)
146.
go back to reference Kouvaris, K.: How evolution learns to evolve: principles of induction in the evolution of adaptive potential. Ph.D. thesis, University of Southampton (2018) Kouvaris, K.: How evolution learns to evolve: principles of induction in the evolution of adaptive potential. Ph.D. thesis, University of Southampton (2018)
147.
go back to reference Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)CrossRef Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)CrossRef
148.
go back to reference Bai, H., Cheng, R., Jin, Y.: Evolutionary reinforcement learning: a survey. Intell. Comput. 2, 0025 (2023)CrossRef Bai, H., Cheng, R., Jin, Y.: Evolutionary reinforcement learning: a survey. Intell. Comput. 2, 0025 (2023)CrossRef
149.
150.
go back to reference Draghi, J., Wagner, G.P.: Evolution of evolvability in a developmental model. Evolution 62(2), 301–315 (2008)CrossRef Draghi, J., Wagner, G.P.: Evolution of evolvability in a developmental model. Evolution 62(2), 301–315 (2008)CrossRef
151.
152.
go back to reference Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218 (2011) Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218 (2011)
153.
154.
go back to reference Banzhaf, W., et al.: Defining and simulating open-ended novelty: requirements, guidelines, and challenges. Theor. Biosci. 135, 131–161 (2016)CrossRef Banzhaf, W., et al.: Defining and simulating open-ended novelty: requirements, guidelines, and challenges. Theor. Biosci. 135, 131–161 (2016)CrossRef
155.
go back to reference Dawkins, R.: The Selfish Gene. Oxford University Press (2016) Dawkins, R.: The Selfish Gene. Oxford University Press (2016)
156.
go back to reference Song, X., Gao, W., Yang, Y., Choromanski, K., Pacchiano, A., Tang, Y.: ES-MAML: simple hessian-free meta learning. arXiv preprint arXiv:1910.01215 (2019) Song, X., Gao, W., Yang, Y., Choromanski, K., Pacchiano, A., Tang, Y.: ES-MAML: simple hessian-free meta learning. arXiv preprint arXiv:​1910.​01215 (2019)
157.
go back to reference Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press (2006) Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press (2006)
158.
go back to reference Finn, C., Rajeswaran, A., Kakade, S., Levine, S.: Online meta-learning. In: International Conference on Machine Learning, pp. 1920–1930. PMLR (2019) Finn, C., Rajeswaran, A., Kakade, S., Levine, S.: Online meta-learning. In: International Conference on Machine Learning, pp. 1920–1930. PMLR (2019)
159.
go back to reference Yao, H., Zhou, Y., Mahdavi, M., Li, Z.J., Socher, R., Xiong, C.: Online structured meta-learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6779–6790 (2020) Yao, H., Zhou, Y., Mahdavi, M., Li, Z.J., Socher, R., Xiong, C.: Online structured meta-learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6779–6790 (2020)
160.
161.
go back to reference Cully, A.: Multi-emitter map-elites: improving quality, diversity and data efficiency with heterogeneous sets of emitters. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 84–92 (2021) Cully, A.: Multi-emitter map-elites: improving quality, diversity and data efficiency with heterogeneous sets of emitters. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 84–92 (2021)
162.
go back to reference Mercado, R., Munoz-Jimenez, V., Ramos, M., Ramos, F.: Generation of virtual creatures under multidisciplinary biological premises. Artif. Life Robot. 27(3), 495–505 (2022)CrossRef Mercado, R., Munoz-Jimenez, V., Ramos, M., Ramos, F.: Generation of virtual creatures under multidisciplinary biological premises. Artif. Life Robot. 27(3), 495–505 (2022)CrossRef
163.
go back to reference Stock, M., Gorochowski, T.: Open-endedness in synthetic biology: a route to continual innovation for biological design. Sci. Adv. 10, eadi3621 (2023) Stock, M., Gorochowski, T.: Open-endedness in synthetic biology: a route to continual innovation for biological design. Sci. Adv. 10, eadi3621 (2023)
164.
go back to reference Borg, J.M., Buskell, A., Kapitany, R., Powers, S.T., Reindl, E., Tennie, C.: Evolved open-endedness in cultural evolution: a new dimension in open-ended evolution research. Arti. Life, 1–22 (2023) Borg, J.M., Buskell, A., Kapitany, R., Powers, S.T., Reindl, E., Tennie, C.: Evolved open-endedness in cultural evolution: a new dimension in open-ended evolution research. Arti. Life, 1–22 (2023)
165.
go back to reference Samvelyan, M., et al.: Minihack the planet: a sandbox for open-ended reinforcement learning research. arXiv preprint arXiv:2109.13202 (2021) Samvelyan, M., et al.: Minihack the planet: a sandbox for open-ended reinforcement learning research. arXiv preprint arXiv:​2109.​13202 (2021)
166.
go back to reference Menashe, J., Stone, P.: Escape room: a configurable testbed for hierarchical reinforcement learning. arXiv preprint arXiv:1812.09521 (2018) Menashe, J., Stone, P.: Escape room: a configurable testbed for hierarchical reinforcement learning. arXiv preprint arXiv:​1812.​09521 (2018)
167.
go back to reference Kaznatcheev, A.: Algorithmic biology of evolution and ecology. Ph.D. thesis, University of Oxford (2020) Kaznatcheev, A.: Algorithmic biology of evolution and ecology. Ph.D. thesis, University of Oxford (2020)
Metadata
Title
Leveraging More of Biology in Evolutionary Reinforcement Learning
Authors
Bruno Gašperov
Marko Đurasević
Domagoj Jakobovic
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56855-8_6

Premium Partner