Skip to main content

2024 | OriginalPaper | Buchkapitel

Leveraging More of Biology in Evolutionary Reinforcement Learning

verfasst von : Bruno Gašperov, Marko Đurasević, Domagoj Jakobovic

Erschienen in: Applications of Evolutionary Computation

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we survey the use of additional biologically inspired mechanisms, principles, and concepts in the area of evolutionary reinforcement learning (ERL). While recent years have witnessed the emergence of a swath of metaphor-laden approaches, many merely echo old algorithms through novel metaphors. Simultaneously, numerous promising ideas from evolutionary biology and related areas, ripe for exploitation within evolutionary machine learning, remain in relative obscurity. To address this gap, we provide a comprehensive analysis of innovative, often unorthodox approaches in ERL that leverage additional bio-inspired elements. Furthermore, we pinpoint research directions in the field with the largest potential to yield impactful outcomes and discuss classes of problems that could benefit the most from such research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
It should be noted that ERL also includes approaches in which different state-action pairs are directly explored, as well as meta-RL methods.
 
Literatur
1.
Zurück zum Zitat Aranha, C., et al.: Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intell. 16(1), 1–6 (2022)CrossRef Aranha, C., et al.: Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intell. 16(1), 1–6 (2022)CrossRef
3.
Zurück zum Zitat Kutschera, U., Niklas, K.J.: The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91, 255–276 (2004)CrossRef Kutschera, U., Niklas, K.J.: The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91, 255–276 (2004)CrossRef
4.
Zurück zum Zitat Barton, N.H.: The “new synthesis’’. Proc. Nat. Acad. Sci. 119(30), e2122147119 (2022)CrossRef Barton, N.H.: The “new synthesis’’. Proc. Nat. Acad. Sci. 119(30), e2122147119 (2022)CrossRef
5.
Zurück zum Zitat Yuen, S., Ezard, T.H.G., Sobey, A.J.: Epigenetic opportunities for evolutionary computation. R. Soc. Open Sci. 10(5), 221256 (2023)CrossRef Yuen, S., Ezard, T.H.G., Sobey, A.J.: Epigenetic opportunities for evolutionary computation. R. Soc. Open Sci. 10(5), 221256 (2023)CrossRef
6.
Zurück zum Zitat Grudniewski, P.A., Sobey, A.J.: cMLSGA: a co-evolutionary multi-level selection genetic algorithm for multi-objective optimization. arXiv preprint arXiv:2104.11072 (2021) Grudniewski, P.A., Sobey, A.J.: cMLSGA: a co-evolutionary multi-level selection genetic algorithm for multi-objective optimization. arXiv preprint arXiv:​2104.​11072 (2021)
7.
Zurück zum Zitat Barton, N., Paixão, T.: Can quantitative and population genetics help us understand evolutionary computation? In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1573–1580 (2013) Barton, N., Paixão, T.: Can quantitative and population genetics help us understand evolutionary computation? In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1573–1580 (2013)
8.
Zurück zum Zitat Pontius, J.U., et al.: Initial sequence and comparative analysis of the cat genome. Genome Res. 17(11), 1675–1689 (2007)CrossRef Pontius, J.U., et al.: Initial sequence and comparative analysis of the cat genome. Genome Res. 17(11), 1675–1689 (2007)CrossRef
9.
Zurück zum Zitat Vassiliades, V., Mouret, J.-B.: Discovering the elite hypervolume by leveraging interspecies correlation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 149–156 (2018) Vassiliades, V., Mouret, J.-B.: Discovering the elite hypervolume by leveraging interspecies correlation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 149–156 (2018)
11.
Zurück zum Zitat Vie, A., Kleinnijenhuis, A.M., Farmer, D.J.: Qualities, challenges and future of genetic algorithms: a literature review. arXiv preprint arXiv:2011.05277 (2020) Vie, A., Kleinnijenhuis, A.M., Farmer, D.J.: Qualities, challenges and future of genetic algorithms: a literature review. arXiv preprint arXiv:​2011.​05277 (2020)
12.
Zurück zum Zitat Dagdia, Z.C., Avdeyev, P., Bayzid, M.S.: Biological computation and computational biology: survey, challenges, and discussion. Artif. Intell. Rev. 54, 4169–4235 (2021)CrossRef Dagdia, Z.C., Avdeyev, P., Bayzid, M.S.: Biological computation and computational biology: survey, challenges, and discussion. Artif. Intell. Rev. 54, 4169–4235 (2021)CrossRef
13.
Zurück zum Zitat Miikkulainen, R., Forrest, S.: A biological perspective on evolutionary computation. Nat. Mach. Intell. 3(1), 9–15 (2021)CrossRef Miikkulainen, R., Forrest, S.: A biological perspective on evolutionary computation. Nat. Mach. Intell. 3(1), 9–15 (2021)CrossRef
14.
Zurück zum Zitat Silver, D., et al.: Mastering the game of go without human knowledge. nature 550(7676), 354–359 (2017)CrossRef Silver, D., et al.: Mastering the game of go without human knowledge. nature 550(7676), 354–359 (2017)CrossRef
15.
Zurück zum Zitat Nguyen, H., La, H.: Review of deep reinforcement learning for robot manipulation. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 590–595. IEEE (2019) Nguyen, H., La, H.: Review of deep reinforcement learning for robot manipulation. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 590–595. IEEE (2019)
16.
Zurück zum Zitat Zhou, S.K., Le, H.N., Luu, K., Nguyen, H.V., Ayache, N.: Deep reinforcement learning in medical imaging: a literature review. Med. Image Anal. 73, 102193 (2021)CrossRef Zhou, S.K., Le, H.N., Luu, K., Nguyen, H.V., Ayache, N.: Deep reinforcement learning in medical imaging: a literature review. Med. Image Anal. 73, 102193 (2021)CrossRef
17.
Zurück zum Zitat Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017) Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:​1707.​06347 (2017)
18.
Zurück zum Zitat Qian, H., Yang, Yu.: Derivative-free reinforcement learning: a review. Front. Comp. Sci. 15(6), 156336 (2021)CrossRef Qian, H., Yang, Yu.: Derivative-free reinforcement learning: a review. Front. Comp. Sci. 15(6), 156336 (2021)CrossRef
19.
Zurück zum Zitat Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017) Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:​1712.​06567 (2017)
20.
Zurück zum Zitat Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864 (2017) Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:​1703.​03864 (2017)
22.
Zurück zum Zitat Sun, H., Zhang, W., Runxiang, Yu., Zhang, Y.: Motion planning for mobile robots-focusing on deep reinforcement learning: a systematic review. IEEE Access 9, 69061–69081 (2021)CrossRef Sun, H., Zhang, W., Runxiang, Yu., Zhang, Y.: Motion planning for mobile robots-focusing on deep reinforcement learning: a systematic review. IEEE Access 9, 69061–69081 (2021)CrossRef
23.
Zurück zum Zitat Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)CrossRef Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)CrossRef
24.
Zurück zum Zitat Jiang, M., Huang, Z., Qiu, L., Huang, W., Yen, G.G.: Transfer learning-based dynamic multiobjective optimization algorithms. IEEE Trans. Evol. Comput. 22(4), 501–514 (2017)CrossRef Jiang, M., Huang, Z., Qiu, L., Huang, W., Yen, G.G.: Transfer learning-based dynamic multiobjective optimization algorithms. IEEE Trans. Evol. Comput. 22(4), 501–514 (2017)CrossRef
25.
Zurück zum Zitat Stanley, K.O., Lehman, J., Soros, L.: Open-endedness: the last grand challenge you’ve never heard of (2017) Stanley, K.O., Lehman, J., Soros, L.: Open-endedness: the last grand challenge you’ve never heard of (2017)
26.
Zurück zum Zitat Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B., Worm, B.: How many species are there on earth and in the ocean? PLoS Biol. 9(8), e1001127 (2011)CrossRef Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B., Worm, B.: How many species are there on earth and in the ocean? PLoS Biol. 9(8), e1001127 (2011)CrossRef
27.
Zurück zum Zitat Rasmussen, S., Sibani, P.: Two modes of evolution: optimization and expansion. Artif. Life 25(1), 9–21 (2019)CrossRef Rasmussen, S., Sibani, P.: Two modes of evolution: optimization and expansion. Artif. Life 25(1), 9–21 (2019)CrossRef
28.
Zurück zum Zitat Packard, N., et al.: An overview of open-ended evolution: editorial introduction to the open-ended evolution ii special issue. Artif. Life 25(2), 93–103 (2019)CrossRef Packard, N., et al.: An overview of open-ended evolution: editorial introduction to the open-ended evolution ii special issue. Artif. Life 25(2), 93–103 (2019)CrossRef
29.
30.
Zurück zum Zitat Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)CrossRef Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)CrossRef
31.
Zurück zum Zitat Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of quality diversity. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 967–974 (2015) Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of quality diversity. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 967–974 (2015)
32.
Zurück zum Zitat Earle, S., Snider, J., Fontaine, M.C., Nikolaidis, S., Togelius, J.: Illuminating diverse neural cellular automata for level generation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 68–76 (2022) Earle, S., Snider, J., Fontaine, M.C., Nikolaidis, S., Togelius, J.: Illuminating diverse neural cellular automata for level generation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 68–76 (2022)
33.
Zurück zum Zitat Chand, S., Howard, D.: Path towards multilevel evolution of robots. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 1381–1382 (2020) Chand, S., Howard, D.: Path towards multilevel evolution of robots. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 1381–1382 (2020)
35.
Zurück zum Zitat Riederer, J.M., Tiso, S., van Eldijk, T.J.B., Weissing, F.J.: Capturing the facets of evolvability in a mechanistic framework. Trends Ecol. Evol. 37(5), 430–439 (2022)CrossRef Riederer, J.M., Tiso, S., van Eldijk, T.J.B., Weissing, F.J.: Capturing the facets of evolvability in a mechanistic framework. Trends Ecol. Evol. 37(5), 430–439 (2022)CrossRef
36.
Zurück zum Zitat Dawkins, R.: The evolution of evolvability. In: Artificial Life, pp. 201–220. Routledge (2019) Dawkins, R.: The evolution of evolvability. In: Artificial Life, pp. 201–220. Routledge (2019)
37.
Zurück zum Zitat Watson, R.A., Szathmáry, E.: How can evolution learn? Trends Ecol. Evol. 31(2), 147–157 (2016)CrossRef Watson, R.A., Szathmáry, E.: How can evolution learn? Trends Ecol. Evol. 31(2), 147–157 (2016)CrossRef
38.
Zurück zum Zitat Lehman, J., Stanley, K.O.: Evolvability is inevitable: increasing evolvability without the pressure to adapt. PLoS ONE 8(4), e62186 (2013)CrossRef Lehman, J., Stanley, K.O.: Evolvability is inevitable: increasing evolvability without the pressure to adapt. PLoS ONE 8(4), e62186 (2013)CrossRef
39.
Zurück zum Zitat Mengistu, H., Lehman, J., Clune, J.: Evolvability search: directly selecting for evolvability in order to study and produce it. In: 2016 Proceedings of the Genetic and Evolutionary Computation Conference, pp. 141–148 (2016) Mengistu, H., Lehman, J., Clune, J.: Evolvability search: directly selecting for evolvability in order to study and produce it. In: 2016 Proceedings of the Genetic and Evolutionary Computation Conference, pp. 141–148 (2016)
40.
Zurück zum Zitat Gajewski, A., Clune, J., Stanley, K.O., Lehman, J.: Evolvability ES: scalable and direct optimization of evolvability. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 107–115 (2019) Gajewski, A., Clune, J., Stanley, K.O., Lehman, J.: Evolvability ES: scalable and direct optimization of evolvability. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 107–115 (2019)
41.
Zurück zum Zitat Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017) Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)
42.
Zurück zum Zitat Katona, A., Franks, D.W., Walker, J.A.: Quality evolvability ES: evolving individuals with a distribution of well performing and diverse offspring. In: The 2022 Conference on Artificial Life, ALIFE 2022. MIT Press (2021) Katona, A., Franks, D.W., Walker, J.A.: Quality evolvability ES: evolving individuals with a distribution of well performing and diverse offspring. In: The 2022 Conference on Artificial Life, ALIFE 2022. MIT Press (2021)
43.
Zurück zum Zitat Gašperov, B., Đurasević, M.: On evolvability and behavior landscapes in neuroevolutionary divergent search. arXiv preprint arXiv:2306.09849 (2023) Gašperov, B., Đurasević, M.: On evolvability and behavior landscapes in neuroevolutionary divergent search. arXiv preprint arXiv:​2306.​09849 (2023)
44.
Zurück zum Zitat Doncieux, S., Paolo, G., Laflaquière, A., Coninx, A.: Novelty search makes evolvability inevitable. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 85–93 (2020) Doncieux, S., Paolo, G., Laflaquière, A., Coninx, A.: Novelty search makes evolvability inevitable. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 85–93 (2020)
45.
Zurück zum Zitat Shorten, D., Nitschke, G.: How evolvable is novelty search? In: 2014 IEEE International Conference on Evolvable Systems, pp. 125–132. IEEE (2014) Shorten, D., Nitschke, G.: How evolvable is novelty search? In: 2014 IEEE International Conference on Evolvable Systems, pp. 125–132. IEEE (2014)
46.
Zurück zum Zitat Medvet, E., Daolio, F., Tagliapietra, D.: Evolvability in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 977–984 (2017) Medvet, E., Daolio, F., Tagliapietra, D.: Evolvability in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 977–984 (2017)
47.
Zurück zum Zitat Liu, D., Virgolin, M., Alderliesten, T., Bosman, P.A.N.: Evolvability degeneration in multi-objective genetic programming for symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 973–981 (2022) Liu, D., Virgolin, M., Alderliesten, T., Bosman, P.A.N.: Evolvability degeneration in multi-objective genetic programming for symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 973–981 (2022)
48.
Zurück zum Zitat Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Computat. 11(1), 1–18 (2003)CrossRef Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Computat. 11(1), 1–18 (2003)CrossRef
50.
Zurück zum Zitat Krause, O., Arbonès, D.R., Igel, C.: CMA-ES with optimal covariance update and storage complexity. In: Advances in Neural Information Processing Systems, vol. 29 (2016) Krause, O., Arbonès, D.R., Igel, C.: CMA-ES with optimal covariance update and storage complexity. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
51.
Zurück zum Zitat Heidrich-Meisner, V., Igel, C.: Uncertainty handling CMA-ES for reinforcement learning. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1211–1218 (2009) Heidrich-Meisner, V., Igel, C.: Uncertainty handling CMA-ES for reinforcement learning. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1211–1218 (2009)
52.
Zurück zum Zitat Branke, J., Mattfeld, D.C.: Anticipation and flexibility in dynamic scheduling. Int. J. Prod. Res. 43(15), 3103–3129 (2005)CrossRef Branke, J., Mattfeld, D.C.: Anticipation and flexibility in dynamic scheduling. Int. J. Prod. Res. 43(15), 3103–3129 (2005)CrossRef
53.
Zurück zum Zitat Pinto, L., Davidson, J., Sukthankar, R., Gupta, A.: Robust adversarial reinforcement learning. In: International Conference on Machine Learning, pp. 2817–2826. PMLR (2017) Pinto, L., Davidson, J., Sukthankar, R., Gupta, A.: Robust adversarial reinforcement learning. In: International Conference on Machine Learning, pp. 2817–2826. PMLR (2017)
54.
Zurück zum Zitat Masel, J., Trotter, M.V.: Robustness and evolvability. Trends Genet. 26(9), 406–414 (2010)CrossRef Masel, J., Trotter, M.V.: Robustness and evolvability. Trends Genet. 26(9), 406–414 (2010)CrossRef
55.
Zurück zum Zitat Wagner, A.: Robustness and evolvability: a paradox resolved. Proc. R. Soc. B Biol. Sci. 275(1630), 91–100 (2008)CrossRef Wagner, A.: Robustness and evolvability: a paradox resolved. Proc. R. Soc. B Biol. Sci. 275(1630), 91–100 (2008)CrossRef
56.
Zurück zum Zitat Spencer, C.C.A., et al.: The influence of recombination on human genetic diversity. PLoS Genet. 2(9), e148 (2006)CrossRef Spencer, C.C.A., et al.: The influence of recombination on human genetic diversity. PLoS Genet. 2(9), e148 (2006)CrossRef
57.
Zurück zum Zitat Zainuddin, F.A., Samad, Md.F.A., Tunggal, D.: A review of crossover methods and problem representation of genetic algorithm in recent engineering applications. Int. J. Adv. Sci. Technol. 29(6s), 759–769 (2020) Zainuddin, F.A., Samad, Md.F.A., Tunggal, D.: A review of crossover methods and problem representation of genetic algorithm in recent engineering applications. Int. J. Adv. Sci. Technol. 29(6s), 759–769 (2020)
58.
Zurück zum Zitat Paixão, T., Barton, N.: A variance decomposition approach to the analysis of genetic algorithms. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 845–852 (2013) Paixão, T., Barton, N.: A variance decomposition approach to the analysis of genetic algorithms. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 845–852 (2013)
60.
Zurück zum Zitat Mitchell, M., Holland, J.H., Forrest, S.: The royal road for genetic algorithms: fitness landscapes and GA performance. Technical report, Los Alamos National Lab., NM (United States) (1991) Mitchell, M., Holland, J.H., Forrest, S.: The royal road for genetic algorithms: fitness landscapes and GA performance. Technical report, Los Alamos National Lab., NM (United States) (1991)
61.
Zurück zum Zitat Polani, D., Miikkulainen, R.: Fast reinforcement learning through eugenic neuro-evolution, pp. 99–277. The University of Texas at Austin, AI (1999) Polani, D., Miikkulainen, R.: Fast reinforcement learning through eugenic neuro-evolution, pp. 99–277. The University of Texas at Austin, AI (1999)
62.
Zurück zum Zitat Polani, D., Miikkulainen, R.: Eugenic neuro-evolution for reinforcement learning. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, pp. 1041–1046 (2000) Polani, D., Miikkulainen, R.: Eugenic neuro-evolution for reinforcement learning. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, pp. 1041–1046 (2000)
63.
Zurück zum Zitat Ventresca, M., Ombuki-Berman, B.: Epistasis in multi-objective evolutionary recurrent neuro-controllers. In: 2007 IEEE Symposium on Artificial Life, pp. 77–84. IEEE (2007) Ventresca, M., Ombuki-Berman, B.: Epistasis in multi-objective evolutionary recurrent neuro-controllers. In: 2007 IEEE Symposium on Artificial Life, pp. 77–84. IEEE (2007)
65.
Zurück zum Zitat Huizinga, J., Stanley, K.O., Clune, J.: The emergence of canalization and evolvability in an open-ended, interactive evolutionary system. Artif. Life 24(3), 157–181 (2018)CrossRef Huizinga, J., Stanley, K.O., Clune, J.: The emergence of canalization and evolvability in an open-ended, interactive evolutionary system. Artif. Life 24(3), 157–181 (2018)CrossRef
66.
Zurück zum Zitat Katona, A., Lourenço, N., Machado, P., Franks, D.W., Walker, J.A.: Utilizing the untapped potential of indirect encoding for neural networks with meta learning. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 537–551. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_34CrossRef Katona, A., Lourenço, N., Machado, P., Franks, D.W., Walker, J.A.: Utilizing the untapped potential of indirect encoding for neural networks with meta learning. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 537–551. Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-72699-7_​34CrossRef
67.
Zurück zum Zitat Wang, R., et al.: Enhanced poet: open-ended reinforcement learning through unbounded invention of learning challenges and their solutions. In: International Conference on Machine Learning, pp. 9940–9951. PMLR (2020) Wang, R., et al.: Enhanced poet: open-ended reinforcement learning through unbounded invention of learning challenges and their solutions. In: International Conference on Machine Learning, pp. 9940–9951. PMLR (2020)
68.
Zurück zum Zitat Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2014)CrossRef Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2014)CrossRef
69.
Zurück zum Zitat Rand, W.: Genetic Algorithms in Dynamic and Coevolving Environments. Ph.D. thesis. Citeseer Rand, W.: Genetic Algorithms in Dynamic and Coevolving Environments. Ph.D. thesis. Citeseer
70.
Zurück zum Zitat Bedau, M.A., Packard, N.H.: Evolution of evolvability via adaptation of mutation rates. Biosystems 69(2–3), 143–162 (2003)CrossRef Bedau, M.A., Packard, N.H.: Evolution of evolvability via adaptation of mutation rates. Biosystems 69(2–3), 143–162 (2003)CrossRef
71.
Zurück zum Zitat Aleti, A.: An adaptive approach to controlling parameters of evolutionary algorithms. Swinburne University of Technology (2012) Aleti, A.: An adaptive approach to controlling parameters of evolutionary algorithms. Swinburne University of Technology (2012)
72.
Zurück zum Zitat Xu, K., Ma, Y., Li, W.: Dynamics-aware novelty search with behavior repulsion. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1112–1120 (2022) Xu, K., Ma, Y., Li, W.: Dynamics-aware novelty search with behavior repulsion. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1112–1120 (2022)
73.
Zurück zum Zitat Weber, M., Schübeler, D.: Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr. Opin. Cell Biol. 19(3), 273–280 (2007)CrossRef Weber, M., Schübeler, D.: Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr. Opin. Cell Biol. 19(3), 273–280 (2007)CrossRef
74.
Zurück zum Zitat Turner, B.M.: Histone acetylation and an epigenetic code. BioEssays 22(9), 836–845 (2000)CrossRef Turner, B.M.: Histone acetylation and an epigenetic code. BioEssays 22(9), 836–845 (2000)CrossRef
75.
Zurück zum Zitat Hu, T.: Evolvability and rate of evolution in evolutionary computation. Ph.D. thesis, Memorial University of Newfoundland (2010) Hu, T.: Evolvability and rate of evolution in evolutionary computation. Ph.D. thesis, Memorial University of Newfoundland (2010)
76.
Zurück zum Zitat Wang, Y., Liu, H., Sun, Z.: Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol. Rev. 92(4), 2084–2111 (2017)CrossRef Wang, Y., Liu, H., Sun, Z.: Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol. Rev. 92(4), 2084–2111 (2017)CrossRef
77.
Zurück zum Zitat Mukhlish, F., Page, J., Bain, M.: Reward-based epigenetic learning algorithm for a decentralised multi-agent system. Int. J. Intell. Unmanned Syst. 8(3), 201–224 (2020)CrossRef Mukhlish, F., Page, J., Bain, M.: Reward-based epigenetic learning algorithm for a decentralised multi-agent system. Int. J. Intell. Unmanned Syst. 8(3), 201–224 (2020)CrossRef
78.
Zurück zum Zitat Mukhlish, F., Page, J., Bain, M.: From reward to histone: combining temporal-difference learning and epigenetic inheritance for swarm’s coevolving decision making. In: 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 1–6. IEEE (2020) Mukhlish, F., Page, J., Bain, M.: From reward to histone: combining temporal-difference learning and epigenetic inheritance for swarm’s coevolving decision making. In: 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 1–6. IEEE (2020)
79.
Zurück zum Zitat Page, J., Armstrong, R., Mukhlish, F.: Simulating search and rescue operations using swarm technology to determine how many searchers are needed to locate missing persons/objects in the shortest time. In: Naweed, A., Bowditch, L., Sprick, C. (eds.) ASC 2019. CCIS, vol. 1067, pp. 106–112. Springer, Singapore (2019). https://doi.org/10.1007/978-981-32-9582-7_8CrossRef Page, J., Armstrong, R., Mukhlish, F.: Simulating search and rescue operations using swarm technology to determine how many searchers are needed to locate missing persons/objects in the shortest time. In: Naweed, A., Bowditch, L., Sprick, C. (eds.) ASC 2019. CCIS, vol. 1067, pp. 106–112. Springer, Singapore (2019). https://​doi.​org/​10.​1007/​978-981-32-9582-7_​8CrossRef
81.
Zurück zum Zitat Boyko, A., Kovalchuk, I.: Epigenetic control of plant stress response. Environ. Mol. Mutagen. 49(1), 61–72 (2008)CrossRef Boyko, A., Kovalchuk, I.: Epigenetic control of plant stress response. Environ. Mol. Mutagen. 49(1), 61–72 (2008)CrossRef
82.
Zurück zum Zitat Khetarpal, K., Riemer, M., Rish, I., Precup, D.: Towards continual reinforcement learning: a review and perspectives. J. Artif. Intell. Res. 75, 1401–1476 (2022)MathSciNetCrossRef Khetarpal, K., Riemer, M., Rish, I., Precup, D.: Towards continual reinforcement learning: a review and perspectives. J. Artif. Intell. Res. 75, 1401–1476 (2022)MathSciNetCrossRef
83.
Zurück zum Zitat Zhou, H., Lan, J., Liu, R., Yosinski, J.: Deconstructing lottery tickets: zeros, signs, and the supermask. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Zhou, H., Lan, J., Liu, R., Yosinski, J.: Deconstructing lottery tickets: zeros, signs, and the supermask. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
84.
Zurück zum Zitat Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., Rastegari, M.: What’s hidden in a randomly weighted neural network? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11893–11902 (2020) Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., Rastegari, M.: What’s hidden in a randomly weighted neural network? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11893–11902 (2020)
85.
Zurück zum Zitat Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018) Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. arXiv preprint arXiv:​1803.​03635 (2018)
86.
Zurück zum Zitat Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)CrossRef Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)CrossRef
88.
Zurück zum Zitat Dal Piccol Sotto, L.F., Mayer, S., Garcke, J.: The pole balancing problem from the viewpoint of system flexibility. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 427–430 (2022) Dal Piccol Sotto, L.F., Mayer, S., Garcke, J.: The pole balancing problem from the viewpoint of system flexibility. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 427–430 (2022)
89.
Zurück zum Zitat Galván-López, E., Poli, R., Kattan, A., O’Neill, M., Brabazon, A.: Neutrality in evolutionary algorithms\(\ldots \) what do we know? Evol. Syst. 2, 145–163 (2011)CrossRef Galván-López, E., Poli, R., Kattan, A., O’Neill, M., Brabazon, A.: Neutrality in evolutionary algorithms\(\ldots \) what do we know? Evol. Syst. 2, 145–163 (2011)CrossRef
90.
Zurück zum Zitat Odling-Smee, F.J., Laland, K.N., Feldman, M.W.: Niche Construction: The Neglected Process in Evolution (MPB-37). Princeton University Press (2013) Odling-Smee, F.J., Laland, K.N., Feldman, M.W.: Niche Construction: The Neglected Process in Evolution (MPB-37). Princeton University Press (2013)
91.
Zurück zum Zitat Flynn, E.G., Laland, K.N., Kendal, R.L., Kendal, J.R.: Target article with commentaries: developmental niche construction. Dev. Sci. 16(2), 296–313 (2013)CrossRef Flynn, E.G., Laland, K.N., Kendal, R.L., Kendal, J.R.: Target article with commentaries: developmental niche construction. Dev. Sci. 16(2), 296–313 (2013)CrossRef
92.
Zurück zum Zitat Dawkins, R.: The Extended Phenotype: The Long Reach of the Gene. Oxford University Press (2016) Dawkins, R.: The Extended Phenotype: The Long Reach of the Gene. Oxford University Press (2016)
93.
Zurück zum Zitat Millhouse, T., Moses, M., Mitchell, M.: Frontiers in evolutionary computation: a workshop report. arXiv preprint arXiv:2110.10320 (2021) Millhouse, T., Moses, M., Mitchell, M.: Frontiers in evolutionary computation: a workshop report. arXiv preprint arXiv:​2110.​10320 (2021)
94.
Zurück zum Zitat Perolat, J., Leibo, J.Z., Zambaldi, V., Beattie, C., Tuyls, K., Graepel, T.: A multi-agent reinforcement learning model of common-pool resource appropriation. In: Advances in Neural Information Processing Systems, vol. 30 (2017) Perolat, J., Leibo, J.Z., Zambaldi, V., Beattie, C., Tuyls, K., Graepel, T.: A multi-agent reinforcement learning model of common-pool resource appropriation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
96.
Zurück zum Zitat Hamon, G., Nisioti, E., Moulin-Frier, C.: Eco-evolutionary dynamics of non-episodic neuroevolution in large multi-agent environments. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 143–146 (2023) Hamon, G., Nisioti, E., Moulin-Frier, C.: Eco-evolutionary dynamics of non-episodic neuroevolution in large multi-agent environments. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 143–146 (2023)
97.
Zurück zum Zitat Berseth, G., et al.: SMiRL: surprise minimizing reinforcement learning in unstable environments. arXiv preprint arXiv:1912.05510 (2019) Berseth, G., et al.: SMiRL: surprise minimizing reinforcement learning in unstable environments. arXiv preprint arXiv:​1912.​05510 (2019)
98.
Zurück zum Zitat Friston, K.: The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13(7), 293–301 (2009)CrossRef Friston, K.: The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13(7), 293–301 (2009)CrossRef
99.
Zurück zum Zitat Lipson, H., et al.: Principles of modularity, regularity, and hierarchy for scalable systems. J. Biol. Phys. Chem. 7(4), 125 (2007)CrossRef Lipson, H., et al.: Principles of modularity, regularity, and hierarchy for scalable systems. J. Biol. Phys. Chem. 7(4), 125 (2007)CrossRef
100.
Zurück zum Zitat Mengistu, H., Huizinga, J., Mouret, J.-B., Clune, J.: The evolutionary origins of hierarchy. PLoS Comput. Biol. 12(6), e1004829 (2016)CrossRef Mengistu, H., Huizinga, J., Mouret, J.-B., Clune, J.: The evolutionary origins of hierarchy. PLoS Comput. Biol. 12(6), e1004829 (2016)CrossRef
101.
Zurück zum Zitat Clune, J., Mouret, J.-B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B Biol. Sci. 280(1755), 20122863 (2013)CrossRef Clune, J., Mouret, J.-B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B Biol. Sci. 280(1755), 20122863 (2013)CrossRef
102.
Zurück zum Zitat Hutsebaut-Buysse, M., Mets, K., Latré, S.: Hierarchical reinforcement learning: a survey and open research challenges. Mach. Learn. Knowl. Extr. 4(1), 172–221 (2022)CrossRef Hutsebaut-Buysse, M., Mets, K., Latré, S.: Hierarchical reinforcement learning: a survey and open research challenges. Mach. Learn. Knowl. Extr. 4(1), 172–221 (2022)CrossRef
103.
Zurück zum Zitat Abramowitz, S., Nitschke, G.: Scalable evolutionary hierarchical reinforcement learning. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 272–275 (2022) Abramowitz, S., Nitschke, G.: Scalable evolutionary hierarchical reinforcement learning. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 272–275 (2022)
104.
Zurück zum Zitat Hansen, T.F.: The evolution of genetic architecture. Annu. Rev. Ecol. Evol. Syst. 37, 123–157 (2006)CrossRef Hansen, T.F.: The evolution of genetic architecture. Annu. Rev. Ecol. Evol. Syst. 37, 123–157 (2006)CrossRef
106.
Zurück zum Zitat Smith, S.D., Pennell, M.W., Dunn, C.W., Edwards, S.V.: Phylogenetics is the new genetics (for most of biodiversity). Trends Ecol. Evol. 35(5), 415–425 (2020)CrossRef Smith, S.D., Pennell, M.W., Dunn, C.W., Edwards, S.V.: Phylogenetics is the new genetics (for most of biodiversity). Trends Ecol. Evol. 35(5), 415–425 (2020)CrossRef
108.
Zurück zum Zitat Cussat-Blanc, S., Harrington, K., Pollack, J.: Gene regulatory network evolution through augmenting topologies. IEEE Trans. Evol. Comput. 19(6), 823–837 (2015)CrossRef Cussat-Blanc, S., Harrington, K., Pollack, J.: Gene regulatory network evolution through augmenting topologies. IEEE Trans. Evol. Comput. 19(6), 823–837 (2015)CrossRef
109.
Zurück zum Zitat Dolson, E., Ofria, C.: Ecological theory provides insights about evolutionary computation. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 105–106 (2018) Dolson, E., Ofria, C.: Ecological theory provides insights about evolutionary computation. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 105–106 (2018)
110.
Zurück zum Zitat Moreno, M.A., Dolson, E., Rodriguez-Papa, S.: Toward phylogenetic inference of evolutionary dynamics at scale. In: Artificial Life Conference Proceedings 35, vol. 2023, p. 79 (2023) Moreno, M.A., Dolson, E., Rodriguez-Papa, S.: Toward phylogenetic inference of evolutionary dynamics at scale. In: Artificial Life Conference Proceedings 35, vol. 2023, p. 79 (2023)
111.
Zurück zum Zitat Lalejini, A., Moreno, M.A., Hernandez, J.G., Dolson, E.: Phylogeny-informed fitness estimation. arXiv preprint arXiv:2306.03970 (2023) Lalejini, A., Moreno, M.A., Hernandez, J.G., Dolson, E.: Phylogeny-informed fitness estimation. arXiv preprint arXiv:​2306.​03970 (2023)
112.
Zurück zum Zitat Salehi, A., Coninx, A., Doncieux, S.: Few-shot quality-diversity optimization. IEEE Robot. Autom. Lett. 7(2), 4424–4431 (2022)CrossRef Salehi, A., Coninx, A., Doncieux, S.: Few-shot quality-diversity optimization. IEEE Robot. Autom. Lett. 7(2), 4424–4431 (2022)CrossRef
113.
Zurück zum Zitat Rainford, P.F., Porter, B.: Using phylogenetic analysis to enhance genetic improvement. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 849–857 (2022) Rainford, P.F., Porter, B.: Using phylogenetic analysis to enhance genetic improvement. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 849–857 (2022)
114.
Zurück zum Zitat Knapp, J.S., Peterson, G.L.: Natural evolution speciation for NEAT. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1487–1493. IEEE (2019) Knapp, J.S., Peterson, G.L.: Natural evolution speciation for NEAT. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1487–1493. IEEE (2019)
115.
Zurück zum Zitat Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRef Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRef
116.
Zurück zum Zitat Dixit, G.: Learning to coordinate in sparse asymmetric multiagent systems (2023) Dixit, G.: Learning to coordinate in sparse asymmetric multiagent systems (2023)
118.
Zurück zum Zitat Turney, P., Whitley, D., Anderson, R.W.: Evolution, learning, and instinct: 100 years of the Baldwin effect. Evol. Comput. 4(3), iv–viii (1996) Turney, P., Whitley, D., Anderson, R.W.: Evolution, learning, and instinct: 100 years of the Baldwin effect. Evol. Comput. 4(3), iv–viii (1996)
119.
Zurück zum Zitat Abrantes, J.P., Abrantes, A.J., Oliehoek, F.A.: Mimicking evolution with reinforcement learning. arXiv preprint arXiv:2004.00048 (2020) Abrantes, J.P., Abrantes, A.J., Oliehoek, F.A.: Mimicking evolution with reinforcement learning. arXiv preprint arXiv:​2004.​00048 (2020)
120.
Zurück zum Zitat Stanton, C., Clune, J.: Curiosity search: producing generalists by encouraging individuals to continually explore and acquire skills throughout their lifetime. PLoS ONE 11(9), e0162235 (2016)CrossRef Stanton, C., Clune, J.: Curiosity search: producing generalists by encouraging individuals to continually explore and acquire skills throughout their lifetime. PLoS ONE 11(9), e0162235 (2016)CrossRef
121.
122.
Zurück zum Zitat Schmidgall, S.: Adaptive reinforcement learning through evolving self-modifying neural networks. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 89–90 (2020) Schmidgall, S.: Adaptive reinforcement learning through evolving self-modifying neural networks. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 89–90 (2020)
123.
Zurück zum Zitat Yaman, A., Iacca, G., Mocanu, D.C., Coler, M., Fletcher, G., Pechenizkiy, M.: Evolving plasticity for autonomous learning under changing environmental conditions. Evol. Comput. 29(3), 391–414 (2021)CrossRef Yaman, A., Iacca, G., Mocanu, D.C., Coler, M., Fletcher, G., Pechenizkiy, M.: Evolving plasticity for autonomous learning under changing environmental conditions. Evol. Comput. 29(3), 391–414 (2021)CrossRef
124.
Zurück zum Zitat Davies, A.: On the interaction of function, constraint and complexity in evolutionary systems. Ph.D. thesis, University of Southampton (2014) Davies, A.: On the interaction of function, constraint and complexity in evolutionary systems. Ph.D. thesis, University of Southampton (2014)
125.
Zurück zum Zitat Macallum, A.B.: The paleochemistry of the body fluids and tissues. Physiol. Rev. 6(2), 316–357 (1926)CrossRef Macallum, A.B.: The paleochemistry of the body fluids and tissues. Physiol. Rev. 6(2), 316–357 (1926)CrossRef
127.
Zurück zum Zitat Stickland, A.C., Murray, I.: BERT and PALs: projected attention layers for efficient adaptation in multi-task learning. In: International Conference on Machine Learning, pp. 5986–5995. PMLR (2019) Stickland, A.C., Murray, I.: BERT and PALs: projected attention layers for efficient adaptation in multi-task learning. In: International Conference on Machine Learning, pp. 5986–5995. PMLR (2019)
128.
Zurück zum Zitat Sunagawa, J., Yamaguchi, R., Nakaoka, S.: Evolving neural networks through bio-inspired parent selection in dynamic environments. Biosystems 218, 104686 (2022)CrossRef Sunagawa, J., Yamaguchi, R., Nakaoka, S.: Evolving neural networks through bio-inspired parent selection in dynamic environments. Biosystems 218, 104686 (2022)CrossRef
129.
Zurück zum Zitat Tang, Y., Nguyen, D., Ha, D.: Neuroevolution of self-interpretable agents. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 414–424 (2020) Tang, Y., Nguyen, D., Ha, D.: Neuroevolution of self-interpretable agents. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 414–424 (2020)
130.
Zurück zum Zitat Gaier, A., Ha, D.: Weight agnostic neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Gaier, A., Ha, D.: Weight agnostic neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
131.
Zurück zum Zitat Freeman, D., Ha, D., Metz, L.: Learning to predict without looking ahead: world models without forward prediction. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Freeman, D., Ha, D., Metz, L.: Learning to predict without looking ahead: world models without forward prediction. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
132.
Zurück zum Zitat Fisher, R.A.: XV.-the correlation between relatives on the supposition of mendelian inheritance. Earth Environ. Sci. Trans. R. Soc. Edinburgh 52(2), 399–433 (1919) Fisher, R.A.: XV.-the correlation between relatives on the supposition of mendelian inheritance. Earth Environ. Sci. Trans. R. Soc. Edinburgh 52(2), 399–433 (1919)
133.
Zurück zum Zitat Smith, D., Tokarchuk, L., Wiggins, G.: Exploring conflicting objectives with MADNS: multiple assessment directed novelty search. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 23–24 (2016) Smith, D., Tokarchuk, L., Wiggins, G.: Exploring conflicting objectives with MADNS: multiple assessment directed novelty search. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 23–24 (2016)
134.
Zurück zum Zitat Smith, D., Tokarchuk, L., Wiggins, G.: Harnessing phenotypic diversity towards multiple independent objectives. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 961–968 (2016) Smith, D., Tokarchuk, L., Wiggins, G.: Harnessing phenotypic diversity towards multiple independent objectives. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 961–968 (2016)
135.
Zurück zum Zitat Uiterwaal, S.F., Lagerstrom, I.T., Luhring, T.M., Salsbery, M.E., DeLong, J.P.: Trade-offs between morphology and thermal niches mediate adaptation in response to competing selective pressures. Ecol. Evol. 10(3), 1368–1377 (2020)CrossRef Uiterwaal, S.F., Lagerstrom, I.T., Luhring, T.M., Salsbery, M.E., DeLong, J.P.: Trade-offs between morphology and thermal niches mediate adaptation in response to competing selective pressures. Ecol. Evol. 10(3), 1368–1377 (2020)CrossRef
136.
Zurück zum Zitat Walsh, B.: Crops can be strong and sensitive. Nat. Plants 3(9), 694–695 (2017)CrossRef Walsh, B.: Crops can be strong and sensitive. Nat. Plants 3(9), 694–695 (2017)CrossRef
137.
Zurück zum Zitat Ofria, C., Adami, C., Collier, T.C.: Selective pressures on genomes in molecular evolution. J. Theoret. Biol. 222(4), 477–483 (2003)MathSciNetCrossRef Ofria, C., Adami, C., Collier, T.C.: Selective pressures on genomes in molecular evolution. J. Theoret. Biol. 222(4), 477–483 (2003)MathSciNetCrossRef
138.
Zurück zum Zitat Back, T.: Selective pressure in evolutionary algorithms: a characterization of selection mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp. 57–62. IEEE (1994) Back, T.: Selective pressure in evolutionary algorithms: a characterization of selection mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp. 57–62. IEEE (1994)
140.
Zurück zum Zitat Gottlieb, J., Oudeyer, P.-Y.: Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19(12), 758–770 (2018)CrossRef Gottlieb, J., Oudeyer, P.-Y.: Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19(12), 758–770 (2018)CrossRef
142.
Zurück zum Zitat Santucci, V.G., Oudeyer, P.-Y., Barto, A., Baldassarre, G.: Intrinsically motivated open-ended learning in autonomous robots. Front. Neurorobot. 3, 115 (2020) CrossRef Santucci, V.G., Oudeyer, P.-Y., Barto, A., Baldassarre, G.: Intrinsically motivated open-ended learning in autonomous robots. Front. Neurorobot. 3, 115 (2020) CrossRef
143.
Zurück zum Zitat Colas, C., Karch, T., Sigaud, O., Oudeyer, P.-Y.: Autotelic agents with intrinsically motivated goal-conditioned reinforcement learning: a short survey. J. Artif. Intell. Res. 74, 1159–1199 (2022)MathSciNetCrossRef Colas, C., Karch, T., Sigaud, O., Oudeyer, P.-Y.: Autotelic agents with intrinsically motivated goal-conditioned reinforcement learning: a short survey. J. Artif. Intell. Res. 74, 1159–1199 (2022)MathSciNetCrossRef
144.
Zurück zum Zitat Georgeon, O.L., Marshall, J.B., Gay, S.: Interactional motivation in artificial systems: between extrinsic and intrinsic motivation. In: 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 1–2. IEEE (2012) Georgeon, O.L., Marshall, J.B., Gay, S.: Interactional motivation in artificial systems: between extrinsic and intrinsic motivation. In: 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 1–2. IEEE (2012)
145.
Zurück zum Zitat Reinitz, J., Vakulenko, S., Grigoriev, D., Weber, A.: Adaptation, fitness landscape learning and fast evolution. F1000Research 8, 358 (2019) Reinitz, J., Vakulenko, S., Grigoriev, D., Weber, A.: Adaptation, fitness landscape learning and fast evolution. F1000Research 8, 358 (2019)
146.
Zurück zum Zitat Kouvaris, K.: How evolution learns to evolve: principles of induction in the evolution of adaptive potential. Ph.D. thesis, University of Southampton (2018) Kouvaris, K.: How evolution learns to evolve: principles of induction in the evolution of adaptive potential. Ph.D. thesis, University of Southampton (2018)
147.
Zurück zum Zitat Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)CrossRef Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)CrossRef
148.
Zurück zum Zitat Bai, H., Cheng, R., Jin, Y.: Evolutionary reinforcement learning: a survey. Intell. Comput. 2, 0025 (2023)CrossRef Bai, H., Cheng, R., Jin, Y.: Evolutionary reinforcement learning: a survey. Intell. Comput. 2, 0025 (2023)CrossRef
149.
150.
Zurück zum Zitat Draghi, J., Wagner, G.P.: Evolution of evolvability in a developmental model. Evolution 62(2), 301–315 (2008)CrossRef Draghi, J., Wagner, G.P.: Evolution of evolvability in a developmental model. Evolution 62(2), 301–315 (2008)CrossRef
151.
Zurück zum Zitat Van Valen, L.: Two modes of evolution. Nature 252(5481), 298–300 (1974)CrossRef Van Valen, L.: Two modes of evolution. Nature 252(5481), 298–300 (1974)CrossRef
152.
Zurück zum Zitat Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218 (2011) Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218 (2011)
153.
Zurück zum Zitat Lavin, A., et al.: Simulation intelligence: towards a new generation of scientific methods. arXiv preprint arXiv:2112.03235 (2021) Lavin, A., et al.: Simulation intelligence: towards a new generation of scientific methods. arXiv preprint arXiv:​2112.​03235 (2021)
154.
Zurück zum Zitat Banzhaf, W., et al.: Defining and simulating open-ended novelty: requirements, guidelines, and challenges. Theor. Biosci. 135, 131–161 (2016)CrossRef Banzhaf, W., et al.: Defining and simulating open-ended novelty: requirements, guidelines, and challenges. Theor. Biosci. 135, 131–161 (2016)CrossRef
155.
Zurück zum Zitat Dawkins, R.: The Selfish Gene. Oxford University Press (2016) Dawkins, R.: The Selfish Gene. Oxford University Press (2016)
156.
Zurück zum Zitat Song, X., Gao, W., Yang, Y., Choromanski, K., Pacchiano, A., Tang, Y.: ES-MAML: simple hessian-free meta learning. arXiv preprint arXiv:1910.01215 (2019) Song, X., Gao, W., Yang, Y., Choromanski, K., Pacchiano, A., Tang, Y.: ES-MAML: simple hessian-free meta learning. arXiv preprint arXiv:​1910.​01215 (2019)
157.
Zurück zum Zitat Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press (2006) Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press (2006)
158.
Zurück zum Zitat Finn, C., Rajeswaran, A., Kakade, S., Levine, S.: Online meta-learning. In: International Conference on Machine Learning, pp. 1920–1930. PMLR (2019) Finn, C., Rajeswaran, A., Kakade, S., Levine, S.: Online meta-learning. In: International Conference on Machine Learning, pp. 1920–1930. PMLR (2019)
159.
Zurück zum Zitat Yao, H., Zhou, Y., Mahdavi, M., Li, Z.J., Socher, R., Xiong, C.: Online structured meta-learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6779–6790 (2020) Yao, H., Zhou, Y., Mahdavi, M., Li, Z.J., Socher, R., Xiong, C.: Online structured meta-learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6779–6790 (2020)
160.
Zurück zum Zitat Rajasegaran, J., Finn, C., Levine, S.: Fully online meta-learning without task boundaries. arXiv preprint arXiv:2202.00263 (2022) Rajasegaran, J., Finn, C., Levine, S.: Fully online meta-learning without task boundaries. arXiv preprint arXiv:​2202.​00263 (2022)
161.
Zurück zum Zitat Cully, A.: Multi-emitter map-elites: improving quality, diversity and data efficiency with heterogeneous sets of emitters. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 84–92 (2021) Cully, A.: Multi-emitter map-elites: improving quality, diversity and data efficiency with heterogeneous sets of emitters. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 84–92 (2021)
162.
Zurück zum Zitat Mercado, R., Munoz-Jimenez, V., Ramos, M., Ramos, F.: Generation of virtual creatures under multidisciplinary biological premises. Artif. Life Robot. 27(3), 495–505 (2022)CrossRef Mercado, R., Munoz-Jimenez, V., Ramos, M., Ramos, F.: Generation of virtual creatures under multidisciplinary biological premises. Artif. Life Robot. 27(3), 495–505 (2022)CrossRef
163.
Zurück zum Zitat Stock, M., Gorochowski, T.: Open-endedness in synthetic biology: a route to continual innovation for biological design. Sci. Adv. 10, eadi3621 (2023) Stock, M., Gorochowski, T.: Open-endedness in synthetic biology: a route to continual innovation for biological design. Sci. Adv. 10, eadi3621 (2023)
164.
Zurück zum Zitat Borg, J.M., Buskell, A., Kapitany, R., Powers, S.T., Reindl, E., Tennie, C.: Evolved open-endedness in cultural evolution: a new dimension in open-ended evolution research. Arti. Life, 1–22 (2023) Borg, J.M., Buskell, A., Kapitany, R., Powers, S.T., Reindl, E., Tennie, C.: Evolved open-endedness in cultural evolution: a new dimension in open-ended evolution research. Arti. Life, 1–22 (2023)
165.
Zurück zum Zitat Samvelyan, M., et al.: Minihack the planet: a sandbox for open-ended reinforcement learning research. arXiv preprint arXiv:2109.13202 (2021) Samvelyan, M., et al.: Minihack the planet: a sandbox for open-ended reinforcement learning research. arXiv preprint arXiv:​2109.​13202 (2021)
166.
Zurück zum Zitat Menashe, J., Stone, P.: Escape room: a configurable testbed for hierarchical reinforcement learning. arXiv preprint arXiv:1812.09521 (2018) Menashe, J., Stone, P.: Escape room: a configurable testbed for hierarchical reinforcement learning. arXiv preprint arXiv:​1812.​09521 (2018)
167.
Zurück zum Zitat Kaznatcheev, A.: Algorithmic biology of evolution and ecology. Ph.D. thesis, University of Oxford (2020) Kaznatcheev, A.: Algorithmic biology of evolution and ecology. Ph.D. thesis, University of Oxford (2020)
Metadaten
Titel
Leveraging More of Biology in Evolutionary Reinforcement Learning
verfasst von
Bruno Gašperov
Marko Đurasević
Domagoj Jakobovic
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-56855-8_6

Premium Partner