Skip to main content
Top

2021 | OriginalPaper | Chapter

Life-Cycle Analysis of Vehicle Lightweighting: A Review

Authors : Jarod C. Kelly, Qiang Dai

Published in: Electric, Hybrid, and Fuel Cell Vehicles

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

AHSS
Advanced high-strength steel
BEVs
Battery electric vehicles
CAFE
Corporate Average Fuel Economy
CFRP
Carbon fiber reinforced plastic
CO2
Carbon dioxide
DOE
US Department of Energy
EPA
US Environmental Protection Agency
FRVs
Fuel reduction values
GFRP
Glass fiber reinforced plastic
GHGs
Greenhouse gas emissions
GREET®
Greenhouse gases, Regulated Emissions, and Energy use in Transportation
HEVs
Hybrid electric vehicles
HSS
High-strength steel
ICEVs
Internal combustion engine vehicles
LCA
Life-cycle analysis
MMLV
Multi Material Lightweight Vehicle
MYs
Model years
NHTSA
National Highway Traffic Safety Administration
NOx
Oxides of nitrogen
OEMs
Original equipment manufacturers
PHEVs
Plug-in hybrid electric vehicles
SOx
Sulfur oxides
SUVs
Sports utility vehicles

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Steffen W et al (1998) The terrestrial carbon cycle: implications for the Kyoto protocol. Science 280(5368):1393–1394CrossRef Steffen W et al (1998) The terrestrial carbon cycle: implications for the Kyoto protocol. Science 280(5368):1393–1394CrossRef
2.
go back to reference O’Neill BC, Oppenheimer M (2002) Climate change: dangerous climate impacts and the Kyoto protocol. Science 296(5575):1971–1972CrossRef O’Neill BC, Oppenheimer M (2002) Climate change: dangerous climate impacts and the Kyoto protocol. Science 296(5575):1971–1972CrossRef
3.
go back to reference Susan S (2007) Climate change 2007-the physical science basis: working group I contribution to the Fourth Assessment Report of the IPCC, vol 4. Cambridge University Press, Cambridge Susan S (2007) Climate change 2007-the physical science basis: working group I contribution to the Fourth Assessment Report of the IPCC, vol 4. Cambridge University Press, Cambridge
4.
go back to reference Ford JD, Berrang-Ford L, Paterson J (2011) A systematic review of observed climate change adaptation in developed nations. Clim Chang 106(2):327–336CrossRef Ford JD, Berrang-Ford L, Paterson J (2011) A systematic review of observed climate change adaptation in developed nations. Clim Chang 106(2):327–336CrossRef
5.
go back to reference IPCC (2013) Climate change 2013: the physical science basis: working group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge IPCC (2013) Climate change 2013: the physical science basis: working group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
6.
go back to reference Mashayekh Y et al (2012) Potentials for sustainable transportation in cities to alleviate climate change impacts. Environ Sci Technol 46(5):2529–2537CrossRef Mashayekh Y et al (2012) Potentials for sustainable transportation in cities to alleviate climate change impacts. Environ Sci Technol 46(5):2529–2537CrossRef
7.
go back to reference Davis SC, Diegel SW, Boundy RG (2014 Transportation energy data book: edition 33. ORNL-6990, Oak Ridge National Laboratory: Knoxville Davis SC, Diegel SW, Boundy RG (2014 Transportation energy data book: edition 33. ORNL-6990, Oak Ridge National Laboratory: Knoxville
8.
go back to reference U.S. Environmental Protection Agency (2010) EPA and NHTSA finalize historic national program to reduce greenhouse gases and improve fuel economy for cars and trucks. EPA-420-F-10-014, U.S. EPA: Washington U.S. Environmental Protection Agency (2010) EPA and NHTSA finalize historic national program to reduce greenhouse gases and improve fuel economy for cars and trucks. EPA-420-F-10-014, U.S. EPA: Washington
9.
go back to reference U.S. Environmental Protection Agency and U.S. National Highway Traffic Safety Administration (2012) 2017 and later model year light-duty vehicle greenhouse gas emissions and corporate average fuel economy standards U.S. EPA; U.S. NHTSA: Washington, DC U.S. Environmental Protection Agency and U.S. National Highway Traffic Safety Administration (2012) 2017 and later model year light-duty vehicle greenhouse gas emissions and corporate average fuel economy standards U.S. EPA; U.S. NHTSA: Washington, DC
10.
go back to reference US EPA and NHTSA. The safer affordable fuel-efficient (SAFE) Vehicles Rule for Model Years 2021–2026 Passenger cars and light trucks. Proposed Rule NHTSA-2018-0067; EPA-HQ-OAR-2018– 0283; FRL-9981-74-OAR US EPA and NHTSA. The safer affordable fuel-efficient (SAFE) Vehicles Rule for Model Years 2021–2026 Passenger cars and light trucks. Proposed Rule NHTSA-2018-0067; EPA-HQ-OAR-2018– 0283; FRL-9981-74-OAR
11.
go back to reference Davis SC, Boundy RG (2018) Transportation energy data book: edition 37. Oak Ridge National Laboratory, Oak Ridge Davis SC, Boundy RG (2018) Transportation energy data book: edition 37. Oak Ridge National Laboratory, Oak Ridge
12.
go back to reference U.S. Environmental Protection Agency (2014) Light duty automotive technology, carbon dioxide emissions, and fuel economy trends: 1975–2014. EPA-420-R-14-023 U.S. Environmental Protection Agency (2014) Light duty automotive technology, carbon dioxide emissions, and fuel economy trends: 1975–2014. EPA-420-R-14-023
14.
go back to reference Singh H (2012) Mass reduction for light-duty vehicles for model years 2017–2025. Report No DOT HS 811 666 Singh H (2012) Mass reduction for light-duty vehicles for model years 2017–2025. Report No DOT HS 811 666
15.
go back to reference U.S. Environmental Protection Agency (2012) Light-duty vehicle mass reduction and cost analysis – midsize crossover utility vehicle. EPA-420-R-12-026 U.S. Environmental Protection Agency (2012) Light-duty vehicle mass reduction and cost analysis – midsize crossover utility vehicle. EPA-420-R-12-026
18.
go back to reference Kirchain Jr RE, Gregory JR, Olivetti EA (2017) Environmental life-cycle assessment. Nat Mater 16(7):693CrossRef Kirchain Jr RE, Gregory JR, Olivetti EA (2017) Environmental life-cycle assessment. Nat Mater 16(7):693CrossRef
19.
go back to reference Sullivan JL, Hu J (1995) Life cycle energy analysis for automobiles. SAE technical paper, 951829 Sullivan JL, Hu J (1995) Life cycle energy analysis for automobiles. SAE technical paper, 951829
20.
go back to reference Stodolsky F, Vyas A, Cuenca R, Gaines L (1995) Life-cycle energy savings potential from aluminum-intensive vehicles. SAE Technical Paper Stodolsky F, Vyas A, Cuenca R, Gaines L (1995) Life-cycle energy savings potential from aluminum-intensive vehicles. SAE Technical Paper
21.
go back to reference EPA and NHTSA (2010) Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards; final rule. Fed Regist 40:25323–25728 EPA and NHTSA (2010) Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards; final rule. Fed Regist 40:25323–25728
22.
go back to reference EPA and NHTSA (2012) 2017 and later model year light-duty vehicle greenhouse gas emissions and corporate average fuel economy standards; final rule. Fed Regist 77(199):62623–63200 EPA and NHTSA (2012) 2017 and later model year light-duty vehicle greenhouse gas emissions and corporate average fuel economy standards; final rule. Fed Regist 77(199):62623–63200
23.
go back to reference Kobayashi O (1997) Car life cycle inventory assessment. SAE technical paper, 971199 Kobayashi O (1997) Car life cycle inventory assessment. SAE technical paper, 971199
24.
go back to reference Schuckert M, Beddies H, Gediga J, Florin H, Eyerer P, Schweimer GW (1997) Life cycle inventories-new experiences to save Environmental loads and costs. SAE technical paper, 971171 Schuckert M, Beddies H, Gediga J, Florin H, Eyerer P, Schweimer GW (1997) Life cycle inventories-new experiences to save Environmental loads and costs. SAE technical paper, 971171
25.
go back to reference Keoleian GA, Spatari S, Beal RT, Stephens RD, Williams RL (1998) Application of life cycle inventory analysis to fuel tank system design. Int J Life Cycle Assess 3(1):18–28CrossRef Keoleian GA, Spatari S, Beal RT, Stephens RD, Williams RL (1998) Application of life cycle inventory analysis to fuel tank system design. Int J Life Cycle Assess 3(1):18–28CrossRef
26.
go back to reference Das S (2000) The life-cycle impacts of aluminum body-in-white automotive material. JOM 52(8):41–44CrossRef Das S (2000) The life-cycle impacts of aluminum body-in-white automotive material. JOM 52(8):41–44CrossRef
27.
go back to reference Schmidt W-P et al (2004) Life cycle assessment of lightweight and end-of-life scenarios for generic compact class passenger vehicles. Int J Life Cycle Assess 9(6):405–416CrossRef Schmidt W-P et al (2004) Life cycle assessment of lightweight and end-of-life scenarios for generic compact class passenger vehicles. Int J Life Cycle Assess 9(6):405–416CrossRef
28.
go back to reference Cheah LW (2010) Cars on a diet: the material and energy impacts of passenger vehicle weight reduction in the US. Massachusetts Institute of Technology, Cambridge, MA Cheah LW (2010) Cars on a diet: the material and energy impacts of passenger vehicle weight reduction in the US. Massachusetts Institute of Technology, Cambridge, MA
29.
go back to reference Kim H-J, McMillan C, Keoleian GA, Skerlos SJ (2010) Greenhouse gas emissions payback for lightweighted vehicles using aluminum and high-strength steel. J Ind Ecol 14(6):929–946CrossRef Kim H-J, McMillan C, Keoleian GA, Skerlos SJ (2010) Greenhouse gas emissions payback for lightweighted vehicles using aluminum and high-strength steel. J Ind Ecol 14(6):929–946CrossRef
30.
go back to reference Koffler C, Rohde-Brandenburger K (2010) On the calculation of fuel savings through lightweight design in automotive life cycle assessments. Int J Life Cycle Assess 15(1):128–135CrossRef Koffler C, Rohde-Brandenburger K (2010) On the calculation of fuel savings through lightweight design in automotive life cycle assessments. Int J Life Cycle Assess 15(1):128–135CrossRef
31.
go back to reference Modaresi R, Pauliuk S, Løvik AN, Müller DB (2014) Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries. Environ Sci Technol 48(18):10776–10784CrossRef Modaresi R, Pauliuk S, Løvik AN, Müller DB (2014) Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries. Environ Sci Technol 48(18):10776–10784CrossRef
32.
go back to reference Kelly JC, Sullivan JL, Burnham A, Elgowainy A (2015) Impacts of vehicle weight reduction via material substitution on life-cycle greenhouse gas emissions. Environ Sci Technol 49(20):12535–12542CrossRef Kelly JC, Sullivan JL, Burnham A, Elgowainy A (2015) Impacts of vehicle weight reduction via material substitution on life-cycle greenhouse gas emissions. Environ Sci Technol 49(20):12535–12542CrossRef
33.
go back to reference Luk JM, Saville BA, MacLean HL (2016) Vehicle attribute trade-offs to meet the 2025 CAFE fuel economy target. Transp Res Part D: Transp Environ 49:154–171CrossRef Luk JM, Saville BA, MacLean HL (2016) Vehicle attribute trade-offs to meet the 2025 CAFE fuel economy target. Transp Res Part D: Transp Environ 49:154–171CrossRef
34.
go back to reference Lewis AM, Kelly JC, Keoleian GA (2012) Evaluating the life cycle greenhouse gas emissions from a lightweight plug-in hybrid electric vehicle in a regional context. In: Sustainable systems and technology (ISSST), 2012 IEEE international symposium on, pp 1–6 Lewis AM, Kelly JC, Keoleian GA (2012) Evaluating the life cycle greenhouse gas emissions from a lightweight plug-in hybrid electric vehicle in a regional context. In: Sustainable systems and technology (ISSST), 2012 IEEE international symposium on, pp 1–6
35.
go back to reference Kim HC, Wallington TJ (2013) Life cycle assessment of vehicle lightweighting: a physics-based model of mass-induced fuel consumption. Environ Sci Technol 47(24):14358–14366CrossRef Kim HC, Wallington TJ (2013) Life cycle assessment of vehicle lightweighting: a physics-based model of mass-induced fuel consumption. Environ Sci Technol 47(24):14358–14366CrossRef
36.
go back to reference WorldAutoSteel (2011) FutureSteelVehicle overview report. WorldAutoSteel WorldAutoSteel (2011) FutureSteelVehicle overview report. WorldAutoSteel
37.
go back to reference Luk JM, Kim HC, De Kleine RD, Wallington TJ, MacLean HL (2018) Greenhouse gas emission benefits of vehicle lightweighting: Monte Carlo probabilistic analysis of the multi material lightweight vehicle glider. Transp Res Part D: Transp Environ 62:1–10CrossRef Luk JM, Kim HC, De Kleine RD, Wallington TJ, MacLean HL (2018) Greenhouse gas emission benefits of vehicle lightweighting: Monte Carlo probabilistic analysis of the multi material lightweight vehicle glider. Transp Res Part D: Transp Environ 62:1–10CrossRef
38.
go back to reference Reynolds C, Kandlikar M (2007) How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption. Environ Res Lett 2(1):014003CrossRef Reynolds C, Kandlikar M (2007) How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption. Environ Res Lett 2(1):014003CrossRef
39.
go back to reference Lewis AM, Kelly JC, Keoleian GA (2014) Vehicle lightweighting vs. electrification: life cycle energy and GHG emissions results for diverse powertrain vehicles. Appl Energy 126:13–20CrossRef Lewis AM, Kelly JC, Keoleian GA (2014) Vehicle lightweighting vs. electrification: life cycle energy and GHG emissions results for diverse powertrain vehicles. Appl Energy 126:13–20CrossRef
40.
go back to reference Lewis AM, Keoleian G, Kelly J (2014) The potential of lightweight materials and advanced combustion engines to reduce life cycle energy and greenhouse gas emissions. SAE technical paper Lewis AM, Keoleian G, Kelly J (2014) The potential of lightweight materials and advanced combustion engines to reduce life cycle energy and greenhouse gas emissions. SAE technical paper
41.
go back to reference Luk JM, Kim HC, De Kleine R, Wallington TJ, MacLean HL (2017) Impact of powertrain type on potential life cycle greenhouse gas emission reductions from a real world lightweight glider. SAE technical paper Luk JM, Kim HC, De Kleine R, Wallington TJ, MacLean HL (2017) Impact of powertrain type on potential life cycle greenhouse gas emission reductions from a real world lightweight glider. SAE technical paper
42.
go back to reference Bushi L, Skszek T, Wagner D (2015) MMLV: life cycle assessment. SAE technical paper Bushi L, Skszek T, Wagner D (2015) MMLV: life cycle assessment. SAE technical paper
43.
go back to reference Bushi L (2018) EDAG Silverado body Lightweighting final LCA report. Aluminum Association Bushi L (2018) EDAG Silverado body Lightweighting final LCA report. Aluminum Association
44.
go back to reference US EPA (2018) Light-duty automotive technology, carbon dioxide emissions, and fuel economy trends: 1975 Through 2017. EPA-420-R-18-001 US EPA (2018) Light-duty automotive technology, carbon dioxide emissions, and fuel economy trends: 1975 Through 2017. EPA-420-R-18-001
45.
go back to reference Keoleian GA, Sullivan JL (2012) Materials challenges and opportunities for enhancing the sustainability of automobiles. MRS Bull 37(04):365–373CrossRef Keoleian GA, Sullivan JL (2012) Materials challenges and opportunities for enhancing the sustainability of automobiles. MRS Bull 37(04):365–373CrossRef
46.
go back to reference Luk JM, Kim HC, De Kleine R, Wallington TJ, MacLean HL (2017) Review of the fuel saving, life cycle GHG emission, and ownership cost impacts of lightweighting vehicles with different powertrains. Environ Sci Technol 51(15):8215–8228CrossRef Luk JM, Kim HC, De Kleine R, Wallington TJ, MacLean HL (2017) Review of the fuel saving, life cycle GHG emission, and ownership cost impacts of lightweighting vehicles with different powertrains. Environ Sci Technol 51(15):8215–8228CrossRef
47.
go back to reference Kim HC, Wallington TJ, Sullivan JL, Keoleian GA (2015) Life cycle assessment of vehicle lightweighting: novel mathematical methods to estimate use-phase fuel consumption. Environ Sci Technol 49(16):10209–10216CrossRef Kim HC, Wallington TJ, Sullivan JL, Keoleian GA (2015) Life cycle assessment of vehicle lightweighting: novel mathematical methods to estimate use-phase fuel consumption. Environ Sci Technol 49(16):10209–10216CrossRef
49.
go back to reference WorldAutoSteel representative, “Personal discussion,” 13-Jun-2014 WorldAutoSteel representative, “Personal discussion,” 13-Jun-2014
51.
go back to reference Sperle J-O, Hallberg L, Larsson J, Groth H, Östman K, Larsson J (2013) The environmental value of high strength steel structures. Steel Eco-Cycle Sperle J-O, Hallberg L, Larsson J, Groth H, Östman K, Larsson J (2013) The environmental value of high strength steel structures. Steel Eco-Cycle
52.
go back to reference Frischknecht R (2010) LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and eco-efficiency. Int J Life Cycle Assess 15(7):666–671CrossRef Frischknecht R (2010) LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and eco-efficiency. Int J Life Cycle Assess 15(7):666–671CrossRef
53.
go back to reference Kim HC, Wallington TJ (2013) Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: review and harmonization. Environ Sci Technol 47(12):6089–6097CrossRef Kim HC, Wallington TJ (2013) Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: review and harmonization. Environ Sci Technol 47(12):6089–6097CrossRef
54.
go back to reference U.S. Department of Energy (2013) Light-duty vehicles technical requirements and gaps for lightweight and propulsion materials. U.S. Department of Energy, Vehicle Technologies Office, Workshop Report U.S. Department of Energy (2013) Light-duty vehicles technical requirements and gaps for lightweight and propulsion materials. U.S. Department of Energy, Vehicle Technologies Office, Workshop Report
55.
go back to reference Malen DE (2011) Fundamentals of automobile body structure design. SAE International, WarrendaleCrossRef Malen DE (2011) Fundamentals of automobile body structure design. SAE International, WarrendaleCrossRef
56.
go back to reference Geyer R (2008) Parametric assessment of climate change impacts of automotive material substitution. Environ Sci Technol 42(18):6973–6979CrossRef Geyer R (2008) Parametric assessment of climate change impacts of automotive material substitution. Environ Sci Technol 42(18):6973–6979CrossRef
57.
go back to reference Elgowainy A, Jeongwoo H, Jacob W, Fred J, David G, Alicia L, Todd R, et al. (2016) Cradle-to-grave lifecycle analysis of US light duty vehicle-fuel pathways: a greenhouse gas emissions and economic assessment of current (2015) and future (2025–2030) technologies. Argonne National Laboratory, Argonne, IL Elgowainy A, Jeongwoo H, Jacob W, Fred J, David G, Alicia L, Todd R, et al. (2016) Cradle-to-grave lifecycle analysis of US light duty vehicle-fuel pathways: a greenhouse gas emissions and economic assessment of current (2015) and future (2025–2030) technologies. Argonne National Laboratory, Argonne, IL
Metadata
Title
Life-Cycle Analysis of Vehicle Lightweighting: A Review
Authors
Jarod C. Kelly
Qiang Dai
Copyright Year
2021
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-0716-1492-1_1080

Premium Partner