Skip to main content
Top
Published in: Quantum Information Processing 10/2019

01-10-2019

Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state

Authors: Gang Yang, Yu-Song Zhang, Ze-Ru Yang, Lan Zhou, Yu-Bo Sheng

Published in: Quantum Information Processing | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hyperentanglement can enlarge the capacity of quantum channel and has big potential application in long-distance quantum communication. However, the channel noise may cause photon transmission loss, which largely limits the practical application of hyperentanglement. In the paper, we propose a linear-optical heralded amplification protocol for protecting the two-photon spatial-mode-polarization hyperentangled state. Our protocol can effectively increase the fidelity of the hyperentangled state while preserve its encoded spatial and polarization features. Comparing with previous heralded amplification protocol for the spatial-mode-polarization hyperentangled state, our protocol is easier to be implemented under current experimental condition. Moreover, besides amplification, if necessary, our protocol can adjust the entanglement coefficients in both polarization and spatial-mode degrees of freedom of the distilled hyperentangled state and recover the less-entangled hyperentangled state into the maximally entangled state. Based on above features, our protocol gives a possible solution to overcome the photon loss and decoherence problems occurred in practical noisy quantum channel condition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
3.
go back to reference Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef
4.
go back to reference Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef
5.
go back to reference Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRef Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRef
6.
go back to reference Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secret direct communication. Sci. Bull. 62, 1519 (2017)CrossRef Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secret direct communication. Sci. Bull. 62, 1519 (2017)CrossRef
7.
go back to reference Qin, H.W., Tang, W.K.S., Tso, R.: Establishing rational networking using the DL04 quantum secure direct communication protocol. Quantum Inf. Process. 17, 152 (2018)ADSMathSciNetCrossRef Qin, H.W., Tang, W.K.S., Tso, R.: Establishing rational networking using the DL04 quantum secure direct communication protocol. Quantum Inf. Process. 17, 152 (2018)ADSMathSciNetCrossRef
8.
go back to reference Zheng, X.Y., Long, Y.X.: Controlled quantum secure direct communication with authentication protocol based on five-particle cluster state and classical XOR operation. Quantum Inf. Process. 18, 129 (2019)ADSMathSciNetCrossRef Zheng, X.Y., Long, Y.X.: Controlled quantum secure direct communication with authentication protocol based on five-particle cluster state and classical XOR operation. Quantum Inf. Process. 18, 129 (2019)ADSMathSciNetCrossRef
9.
go back to reference Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 90312 (2018)ADSCrossRef Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 90312 (2018)ADSCrossRef
10.
go back to reference Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)ADSCrossRef Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)ADSCrossRef
11.
go back to reference Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRef Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRef
12.
go back to reference Wang, M.Y., Yan, F.L.: Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities. Quantum Inf. Process. 15, 3383–3392 (2016)ADSMathSciNetCrossRef Wang, M.Y., Yan, F.L.: Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities. Quantum Inf. Process. 15, 3383–3392 (2016)ADSMathSciNetCrossRef
13.
go back to reference Li, T.C., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61, 163 (2016)CrossRef Li, T.C., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61, 163 (2016)CrossRef
14.
go back to reference Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)CrossRef Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)CrossRef
15.
go back to reference Ding, D., He, Y.Q., Yan, F.L., Gao, T.: On four-photon entanglement from parametric down-conversion process. Quantum Inf. Process. 17, 243 (2018)ADSMathSciNetCrossRef Ding, D., He, Y.Q., Yan, F.L., Gao, T.: On four-photon entanglement from parametric down-conversion process. Quantum Inf. Process. 17, 243 (2018)ADSMathSciNetCrossRef
16.
go back to reference Chen, N., Zhang, L.X., Pei, C.X.: Faithful qubit transmission in a quantum communication network with heterogeneous channels. Quantum Inf. Process. 17, 79 (2018)ADSMathSciNetCrossRef Chen, N., Zhang, L.X., Pei, C.X.: Faithful qubit transmission in a quantum communication network with heterogeneous channels. Quantum Inf. Process. 17, 79 (2018)ADSMathSciNetCrossRef
17.
go back to reference Bruss, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)ADSCrossRef Bruss, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)ADSCrossRef
18.
go back to reference Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)ADSCrossRef Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)ADSCrossRef
19.
go back to reference Wilde, M.M., Uskov, D.B.: Linear-optical hyperentanglement assisted quantum error-correcting code. Phys. Rev. A 79, 022305 (2009)ADSCrossRef Wilde, M.M., Uskov, D.B.: Linear-optical hyperentanglement assisted quantum error-correcting code. Phys. Rev. A 79, 022305 (2009)ADSCrossRef
20.
go back to reference Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)ADSCrossRef Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)ADSCrossRef
21.
go back to reference Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities. Opt. Exp. 22, 6547 (2014)ADSCrossRef Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities. Opt. Exp. 22, 6547 (2014)ADSCrossRef
22.
go back to reference Du, F.F., Shi, Z.R.: Robust hybrid hyper-controlled-not gates assisted by an input–output process of low-Q cavities. Opt. Exp. 27, 17493 (2019)ADSCrossRef Du, F.F., Shi, Z.R.: Robust hybrid hyper-controlled-not gates assisted by an input–output process of low-Q cavities. Opt. Exp. 27, 17493 (2019)ADSCrossRef
23.
go back to reference Wang, G.Y., Ren, B.C., Deng, F.G., Long, G.L.: Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement. Opt. Exp. 27, 8994 (2019)ADSCrossRef Wang, G.Y., Ren, B.C., Deng, F.G., Long, G.L.: Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement. Opt. Exp. 27, 8994 (2019)ADSCrossRef
24.
go back to reference Ren, B.C., Wang, H., Alzahrani, F., Hobiny, A., Deng, F.G.: Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics. Ann. Phys. 385, 86–94 (2017)ADSMathSciNetCrossRef Ren, B.C., Wang, H., Alzahrani, F., Hobiny, A., Deng, F.G.: Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics. Ann. Phys. 385, 86–94 (2017)ADSMathSciNetCrossRef
25.
go back to reference Wang, H., Ren, B.C., Wang, A.H., Alsaedi, A., Hayat, T., Deng, F.G.: General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics. Front. Phys. 13, 130315 (2018)CrossRef Wang, H., Ren, B.C., Wang, A.H., Alsaedi, A., Hayat, T., Deng, F.G.: General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics. Front. Phys. 13, 130315 (2018)CrossRef
26.
go back to reference Zheng, Y.Y., Liang, L.X., Zhang, M.: Error-heralded generation and self-assisted complete analysis of two-photon hyperentangled Bell states through single-sided quantum-dot-cavity systems. Sci. China Phys. Mech. Astron. 62, 970312 (2019)CrossRef Zheng, Y.Y., Liang, L.X., Zhang, M.: Error-heralded generation and self-assisted complete analysis of two-photon hyperentangled Bell states through single-sided quantum-dot-cavity systems. Sci. China Phys. Mech. Astron. 62, 970312 (2019)CrossRef
27.
go back to reference Wang, M.Y., Yan, F.L., Gao, T.: Deterministic state analysis for polarization-spatial-time-bin hyperentanglement with nonlinear optics. Laser Phys. Lett. 15, 125206 (2018)ADSCrossRef Wang, M.Y., Yan, F.L., Gao, T.: Deterministic state analysis for polarization-spatial-time-bin hyperentanglement with nonlinear optics. Laser Phys. Lett. 15, 125206 (2018)ADSCrossRef
28.
go back to reference Wang, M.Y., Xu, J.Z., Yan, F.L., Gao, T.: Entanglement concentration for polarization-spatial-time-bin hyperentangled Bell states. EPL 123, 60002 (2018)ADSCrossRef Wang, M.Y., Xu, J.Z., Yan, F.L., Gao, T.: Entanglement concentration for polarization-spatial-time-bin hyperentangled Bell states. EPL 123, 60002 (2018)ADSCrossRef
29.
go back to reference Ralph, T.C., Lund, A.P.: Quantum communication measurement and computing. In: lvovsky, A. (ed.) Proceedings of the 9th International Conference. pp. 155–160. AIP , New York (2009) Ralph, T.C., Lund, A.P.: Quantum communication measurement and computing. In: lvovsky, A. (ed.) Proceedings of the 9th International Conference. pp. 155–160. AIP , New York (2009)
30.
go back to reference Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)ADSCrossRef Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)ADSCrossRef
31.
go back to reference Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304 (2011)ADSCrossRef Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304 (2011)ADSCrossRef
32.
go back to reference Pitkanen, D., Ma, X., Wickert, R., van Loock, P., Lütkenhaus, N.: Effcient heralding of photonic qubits with applications to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011)ADSCrossRef Pitkanen, D., Ma, X., Wickert, R., van Loock, P., Lütkenhaus, N.: Effcient heralding of photonic qubits with applications to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011)ADSCrossRef
33.
go back to reference Kaushik, P., Seshadreesan, Takeoka M., Sasaki, M.: Progress towards practical device-independent quantum key distribution with spontaneous parametric down-conversion sources, on–off photodetectors, and entanglement swapping. Phys. Rev. A 93, 042328 (2016)ADSCrossRef Kaushik, P., Seshadreesan, Takeoka M., Sasaki, M.: Progress towards practical device-independent quantum key distribution with spontaneous parametric down-conversion sources, on–off photodetectors, and entanglement swapping. Phys. Rev. A 93, 042328 (2016)ADSCrossRef
34.
go back to reference Meyer-Scott, E., Bula, M., Bartkiewicz, K., C̆ernoch, A., Soubusta, J., Jennewein, T., Lemr, K.: Entanglement-based linear-optical qubit amplifier. Phys. Rev. A 88, 012327 (2013)ADSCrossRef Meyer-Scott, E., Bula, M., Bartkiewicz, K., C̆ernoch, A., Soubusta, J., Jennewein, T., Lemr, K.: Entanglement-based linear-optical qubit amplifier. Phys. Rev. A 88, 012327 (2013)ADSCrossRef
36.
go back to reference Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)ADSCrossRef Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)ADSCrossRef
37.
go back to reference Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplification. Phys. Rev. A 86, 034302 (2012)ADSCrossRef Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplification. Phys. Rev. A 86, 034302 (2012)ADSCrossRef
38.
go back to reference Minár̆, J., de Riedmatten, H., Sangouard, N.: Quantum repeaters based on heralded qubit amplifiers. Phys. Rev. A 85, 032313 (2012)ADSCrossRef Minár̆, J., de Riedmatten, H., Sangouard, N.: Quantum repeaters based on heralded qubit amplifiers. Phys. Rev. A 85, 032313 (2012)ADSCrossRef
39.
go back to reference Bruno, N., Pini, V., Martin, A., Thew, R.T.: A complete characterization of the heralded noiseless amplification of photons. New J. Phys. 15, 093002 (2013)ADSCrossRef Bruno, N., Pini, V., Martin, A., Thew, R.T.: A complete characterization of the heralded noiseless amplification of photons. New J. Phys. 15, 093002 (2013)ADSCrossRef
40.
go back to reference Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23–28 (2013)CrossRef Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23–28 (2013)CrossRef
41.
go back to reference McMahon, N.A., Lund, A.P., Ralph, T.C.: Optimal architecture for a nondeterministic noiseless linear amplifier. Phys. Rev. A 89, 023846 (2014)ADSCrossRef McMahon, N.A., Lund, A.P., Ralph, T.C.: Optimal architecture for a nondeterministic noiseless linear amplifier. Phys. Rev. A 89, 023846 (2014)ADSCrossRef
42.
go back to reference Sheng, Y.B., Ou-Yang, Y., Zhou, L., Wang, L.: Protecting single-photon multi-mode W state from photon loss. Quantum Inf. Process. 13, 1595 (2014)ADSMathSciNetCrossRef Sheng, Y.B., Ou-Yang, Y., Zhou, L., Wang, L.: Protecting single-photon multi-mode W state from photon loss. Quantum Inf. Process. 13, 1595 (2014)ADSMathSciNetCrossRef
43.
go back to reference Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)ADSCrossRef Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)ADSCrossRef
44.
go back to reference Wang, T.J., Liu, L.L., Zhang, R., Cao, C., Wang, C.: One-step hyperentanglement purification and hyperdistillation with linear optics. Opt. Exp. 23, 9284 (2015)ADSCrossRef Wang, T.J., Liu, L.L., Zhang, R., Cao, C., Wang, C.: One-step hyperentanglement purification and hyperdistillation with linear optics. Opt. Exp. 23, 9284 (2015)ADSCrossRef
45.
go back to reference Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)ADSCrossRef Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)ADSCrossRef
46.
go back to reference Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Protecting single-photon entanglement with imperfect single-photon source. Quantum Inf. Process. 14, 635 (2015)ADSMathSciNetCrossRef Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Protecting single-photon entanglement with imperfect single-photon source. Quantum Inf. Process. 14, 635 (2015)ADSMathSciNetCrossRef
47.
go back to reference Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Linear-optical qubit amplification with spontaneous parametric down-conversion source. Laser Phys. 26, 015204 (2016)ADSCrossRef Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Linear-optical qubit amplification with spontaneous parametric down-conversion source. Laser Phys. 26, 015204 (2016)ADSCrossRef
48.
go back to reference Zhou, L., Ou-Yang, Y., Wang, L., Sheng, Y.B.: Protecting single-photon entanglement with practical entanglement source. Quantum Inf. Process. 16, 151 (2017)ADSMathSciNetCrossRef Zhou, L., Ou-Yang, Y., Wang, L., Sheng, Y.B.: Protecting single-photon entanglement with practical entanglement source. Quantum Inf. Process. 16, 151 (2017)ADSMathSciNetCrossRef
49.
go back to reference Bruno, N., Pini, V., Martin, A., Verma, V.B., Nam, S.W., Mirin, R., Lita, A., Marsili, F., Korzh, B., Bussieres, F., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.: Heralded amplification of photonic qubits. Opt. Exp. 24, 125 (2016)ADSCrossRef Bruno, N., Pini, V., Martin, A., Verma, V.B., Nam, S.W., Mirin, R., Lita, A., Marsili, F., Korzh, B., Bussieres, F., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.: Heralded amplification of photonic qubits. Opt. Exp. 24, 125 (2016)ADSCrossRef
50.
go back to reference Monteiro, F., Verbanis, E., Vivoli Caprara, V., Martin, A., Gisin, N., Zbinden, H., Thew, R.T.: Heralded amplification of path entangled quantum states. Quantum Sci. Technol. 2, 024008 (2017)ADSCrossRef Monteiro, F., Verbanis, E., Vivoli Caprara, V., Martin, A., Gisin, N., Zbinden, H., Thew, R.T.: Heralded amplification of path entangled quantum states. Quantum Sci. Technol. 2, 024008 (2017)ADSCrossRef
51.
go back to reference Wang, D.D., Jin, Y.Y., Qin, S.X., Zu, H., Zhou, L., Zhong, W., Sheng, Y.B.: Heralded noiseless amplification for single-photon entangled state with polarization feature. Quantum Inf. Process. 17, 56 (2018)ADSMathSciNetCrossRef Wang, D.D., Jin, Y.Y., Qin, S.X., Zu, H., Zhou, L., Zhong, W., Sheng, Y.B.: Heralded noiseless amplification for single-photon entangled state with polarization feature. Quantum Inf. Process. 17, 56 (2018)ADSMathSciNetCrossRef
52.
go back to reference Jin, Y.Y., Qin, S.X., Zu, H., Zhou, L., Zhong, W., Sheng, Y.B.: Heralded amplification of single-photon entanglement with polarization feature. Front. Phys. 13, 130321 (2018)CrossRef Jin, Y.Y., Qin, S.X., Zu, H., Zhou, L., Zhong, W., Sheng, Y.B.: Heralded amplification of single-photon entanglement with polarization feature. Front. Phys. 13, 130321 (2018)CrossRef
53.
go back to reference Chen, L.Q., Sheng, Y.B., Zhou, L.: Noiseless linear amplification for the single-photon entanglement of arbitrary polarization–time-bin qudit. Chin. Phys. B 28, 010302 (2019)ADSCrossRef Chen, L.Q., Sheng, Y.B., Zhou, L.: Noiseless linear amplification for the single-photon entanglement of arbitrary polarization–time-bin qudit. Chin. Phys. B 28, 010302 (2019)ADSCrossRef
54.
go back to reference Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)ADSCrossRef Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)ADSCrossRef
55.
go back to reference Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)ADSCrossRef Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)ADSCrossRef
56.
go back to reference Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)ADSCrossRef Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)ADSCrossRef
Metadata
Title
Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state
Authors
Gang Yang
Yu-Song Zhang
Ze-Ru Yang
Lan Zhou
Yu-Bo Sheng
Publication date
01-10-2019
Publisher
Springer US
Published in
Quantum Information Processing / Issue 10/2019
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2432-1

Other articles of this Issue 10/2019

Quantum Information Processing 10/2019 Go to the issue