Skip to main content
Top
Published in: Journal of Scientific Computing 1/2020

01-10-2020

Linearized Implicit Methods Based on a Single-Layer Neural Network: Application to Keller–Segel Models

Author: M. Benzakour Amine

Published in: Journal of Scientific Computing | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper is concerned with numerical approximation of some two-dimensional Keller–Segel chemotaxis models, especially those generating pattern formations. The numerical resolution of such nonlinear parabolic–parabolic or parabolic–elliptic systems of partial differential equations consumes a significant computational time when solved with fully implicit schemes. Standard linearized semi-implicit schemes, however, require reasonable computational time, but suffer from lack of accuracy. In this work, two methods based on a single-layer neural network are developed to build linearized implicit schemes: a basic one called the each step training linearized implicit method and a more efficient one, the selected steps training linearized implicit method. The proposed schemes, which make use also of a spatial finite volume method with a hybrid difference scheme approximation for convection–diffusion fluxes, are first derived for a chemotaxis system arising in embryology. The convergence of the numerical solutions to a corresponding weak solution of the studied system is established. Then the proposed methods are applied to a number of chemotaxis models, and several numerical tests are performed to illustrate their accuracy, efficiency and robustness. Generalization of the developed methods to other nonlinear partial differential equations is straightforward.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)MathSciNetMATH Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)MathSciNetMATH
2.
go back to reference Painter, K.J.: Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 481, 162–182 (2019)MathSciNetMATH Painter, K.J.: Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 481, 162–182 (2019)MathSciNetMATH
3.
go back to reference Akhmouch, M., Benzakour Amine, M.: A time semi-exponentially fitted scheme for chemotaxis-growth models. Calcolo 54(2), 609–641 (2017)MathSciNetMATH Akhmouch, M., Benzakour Amine, M.: A time semi-exponentially fitted scheme for chemotaxis-growth models. Calcolo 54(2), 609–641 (2017)MathSciNetMATH
4.
go back to reference Jüngel, A., Leingang, O.: Blow-up of solutions to semi-discrete parabolic-elliptic Keller–Segel models. Discrete Contin. Dyn. Syst. Ser. B 24, 609–641 (2019)MathSciNetMATH Jüngel, A., Leingang, O.: Blow-up of solutions to semi-discrete parabolic-elliptic Keller–Segel models. Discrete Contin. Dyn. Syst. Ser. B 24, 609–641 (2019)MathSciNetMATH
6.
go back to reference Xiao, X., Feng, X., He, Y.: Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method. Comput. Math. Appl. 78(1), 20–34 (2019)MathSciNetMATH Xiao, X., Feng, X., He, Y.: Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method. Comput. Math. Appl. 78(1), 20–34 (2019)MathSciNetMATH
7.
go back to reference Zhang, Y., Zhang, J.: The splitting mixed element method for parabolic equation and its application in chemotaxis model. Appl. Math. Comput. 313, 287–300 (2017)MathSciNetMATH Zhang, Y., Zhang, J.: The splitting mixed element method for parabolic equation and its application in chemotaxis model. Appl. Math. Comput. 313, 287–300 (2017)MathSciNetMATH
8.
go back to reference Sulman, M., Nguyen, T.: A positivity preserving moving mesh finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 80(1), 649–666 (2019)MathSciNetMATH Sulman, M., Nguyen, T.: A positivity preserving moving mesh finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 80(1), 649–666 (2019)MathSciNetMATH
9.
go back to reference Zhang, R., Zhu, J., Loula, A.F., Yu, X.: Operator splitting combined with positivity-preserving discontinuous Galerkin method for the chemotaxis model. J. Comput. Appl. Math. 302, 312–326 (2016)MathSciNetMATH Zhang, R., Zhu, J., Loula, A.F., Yu, X.: Operator splitting combined with positivity-preserving discontinuous Galerkin method for the chemotaxis model. J. Comput. Appl. Math. 302, 312–326 (2016)MathSciNetMATH
10.
go back to reference Liu, J.G., Wang, L., Zhou, Z.: Positivity-preserving and asymptotic preserving method for 2D Keller–Segel equations. Math. Comput. 87(311), 1165–1189 (2018)MATH Liu, J.G., Wang, L., Zhou, Z.: Positivity-preserving and asymptotic preserving method for 2D Keller–Segel equations. Math. Comput. 87(311), 1165–1189 (2018)MATH
11.
go back to reference Li, X.H., Shu, C.W., Yang, Y.: Local discontinuous Galerkin method for the Keller–Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)MathSciNetMATH Li, X.H., Shu, C.W., Yang, Y.: Local discontinuous Galerkin method for the Keller–Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)MathSciNetMATH
12.
go back to reference Dehghan, M., Abbaszadeh, M., Mohebbi, A.: A meshless technique based on the local radial basis functions collocation method for solving parabolic-parabolic Patlak-Keller-Segel chemotaxis model. Eng. Anal. Bound. Elem. 56, 129–144 (2015)MathSciNetMATH Dehghan, M., Abbaszadeh, M., Mohebbi, A.: A meshless technique based on the local radial basis functions collocation method for solving parabolic-parabolic Patlak-Keller-Segel chemotaxis model. Eng. Anal. Bound. Elem. 56, 129–144 (2015)MathSciNetMATH
13.
go back to reference Cancès, C., Ibrahim, M., Saad, M.: Positive nonlinear CVFE scheme for degenerate anisotropic Keller–Segel system. SMAI J. Comput. Math. 3, 1–28 (2017) MathSciNetMATH Cancès, C., Ibrahim, M., Saad, M.: Positive nonlinear CVFE scheme for degenerate anisotropic Keller–Segel system. SMAI J. Comput. Math. 3, 1–28 (2017) MathSciNetMATH
14.
go back to reference Oster, G.F., Murray, J.D.: Pattern formation models and developmental constraints. J. Expl. Zool. 251, 186–202 (1989) Oster, G.F., Murray, J.D.: Pattern formation models and developmental constraints. J. Expl. Zool. 251, 186–202 (1989)
15.
go back to reference Murray, J.D., Deeming, D.C., Ferguson, M.W.J.: Size-dependent pigmentation-pattern formation in embryos of Alligator mississippiensis: time of initiation of pattern generation mechanism. Proc. R. Soc. B 239, 279–293 (1990) Murray, J.D., Deeming, D.C., Ferguson, M.W.J.: Size-dependent pigmentation-pattern formation in embryos of Alligator mississippiensis: time of initiation of pattern generation mechanism. Proc. R. Soc. B 239, 279–293 (1990)
16.
go back to reference Akhmouch, M., Benzakour Amine, M.: A corrected decoupled scheme for chemotaxis models. J. Comput. Appl. Math. 323, 36–52 (2017)MathSciNetMATH Akhmouch, M., Benzakour Amine, M.: A corrected decoupled scheme for chemotaxis models. J. Comput. Appl. Math. 323, 36–52 (2017)MathSciNetMATH
17.
go back to reference Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)MathSciNetMATH Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)MathSciNetMATH
18.
go back to reference Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comput. Appl. Math. 239, 290–303 (2013)MathSciNetMATH Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comput. Appl. Math. 239, 290–303 (2013)MathSciNetMATH
19.
go back to reference Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. Comput. Methods Appl. Math. 10(2), 219–232 (2010)MathSciNetMATH Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. Comput. Methods Appl. Math. 10(2), 219–232 (2010)MathSciNetMATH
20.
go back to reference Akhmouch, M., Benzakour Amine, M.: Semi-implicit finite volume schemes for a chemotaxis-growth model. Indag. Math. 27(3), 702–720 (2016)MathSciNetMATH Akhmouch, M., Benzakour Amine, M.: Semi-implicit finite volume schemes for a chemotaxis-growth model. Indag. Math. 27(3), 702–720 (2016)MathSciNetMATH
21.
go back to reference Horstmann, D.: From 1970 until now: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. Dtsch. Math. Ver. 105, 103–165 (2003)MATH Horstmann, D.: From 1970 until now: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. Dtsch. Math. Ver. 105, 103–165 (2003)MATH
22.
go back to reference Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)MathSciNetMATH Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)MathSciNetMATH
23.
go back to reference Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)MATH Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)MATH
24.
go back to reference Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Diff. Eqn. 35, 1516–1537 (2010)MathSciNetMATH Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Diff. Eqn. 35, 1516–1537 (2010)MathSciNetMATH
25.
go back to reference Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26(4), 280–301 (2001)MathSciNetMATH Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26(4), 280–301 (2001)MathSciNetMATH
26.
go back to reference Painter, K.J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Quart. 10(4), 501–543 (2002)MathSciNetMATH Painter, K.J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Quart. 10(4), 501–543 (2002)MathSciNetMATH
27.
go back to reference Murray, J.D.: Mathematical Biology, vol. 2, 3rd edn. Springer, Berlin (2003)MATH Murray, J.D.: Mathematical Biology, vol. 2, 3rd edn. Springer, Berlin (2003)MATH
28.
go back to reference Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235(14), 4015–4031 (2011)MathSciNetMATH Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235(14), 4015–4031 (2011)MathSciNetMATH
29.
go back to reference Chamoun, G., Saad, M., Talhouk, R.: Monotone combined edge finite volume-finite element scheme for anisotropic Keller–Segel model. Numer. Methods Partial Differ. Equ. 30(3), 1030–1065 (2014)MathSciNetMATH Chamoun, G., Saad, M., Talhouk, R.: Monotone combined edge finite volume-finite element scheme for anisotropic Keller–Segel model. Numer. Methods Partial Differ. Equ. 30(3), 1030–1065 (2014)MathSciNetMATH
30.
go back to reference Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007)MathSciNetMATH Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007)MathSciNetMATH
31.
go back to reference Zhou, G., Saito, N.: Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis. Numerische Mathematik 135(1), 265–311 (2017)MathSciNetMATH Zhou, G., Saito, N.: Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis. Numerische Mathematik 135(1), 265–311 (2017)MathSciNetMATH
32.
go back to reference Ibrahim, M., Saad, M.: On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model. Comput. Math. Appl. 68(9), 1032–1051 (2014)MathSciNetMATH Ibrahim, M., Saad, M.: On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model. Comput. Math. Appl. 68(9), 1032–1051 (2014)MathSciNetMATH
33.
go back to reference Filbet, F.: A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104(4), 457–488 (2006)MathSciNetMATH Filbet, F.: A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104(4), 457–488 (2006)MathSciNetMATH
34.
go back to reference Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)
35.
go back to reference Lagaris, I.E., Likas, A.C., Papageorgiou, D.G.: Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans. Neural Netw. 11(5), 1041–1049 (2000) Lagaris, I.E., Likas, A.C., Papageorgiou, D.G.: Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans. Neural Netw. 11(5), 1041–1049 (2000)
36.
go back to reference Shirvany, Y., Hayati, M., Moradian, R.: Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Appl. Soft Comput. 9(1), 20–29 (2009) Shirvany, Y., Hayati, M., Moradian, R.: Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Appl. Soft Comput. 9(1), 20–29 (2009)
37.
go back to reference Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14(2), 185–199 (2001)MATH Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14(2), 185–199 (2001)MATH
38.
go back to reference Aminataei, A., Mazarei, M.M.: Numerical solution of Poisson’s equation using radial basis function networks on the polar coordinate. Comput. Math. Appl. 56(11), 2887–2895 (2008)MathSciNetMATH Aminataei, A., Mazarei, M.M.: Numerical solution of Poisson’s equation using radial basis function networks on the polar coordinate. Comput. Math. Appl. 56(11), 2887–2895 (2008)MathSciNetMATH
39.
go back to reference Jianyu, L., Siwei, L., Yingjian, Q., Yaping, H.: Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Netw. 16, 729–734 (2003) Jianyu, L., Siwei, L., Yingjian, Q., Yaping, H.: Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Netw. 16, 729–734 (2003)
40.
go back to reference Sun, H., Hou, M., Yang, Y., Zhang, T., Weng, F., Han, F.: Solving partial differential equation based on Bernstein neural network and extreme learning machine algorithm. Neural Process. Lett. 50(2), 1153–1172 (2019) Sun, H., Hou, M., Yang, Y., Zhang, T., Weng, F., Han, F.: Solving partial differential equation based on Bernstein neural network and extreme learning machine algorithm. Neural Process. Lett. 50(2), 1153–1172 (2019)
41.
go back to reference Mall, S., Chakraverty, S.: Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process. Lett. 45(3), 825–840 (2017) Mall, S., Chakraverty, S.: Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process. Lett. 45(3), 825–840 (2017)
42.
go back to reference Rudd, K., Ferrari, S.: A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks. Neurocomputing. 155, 277–285 (2015) Rudd, K., Ferrari, S.: A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks. Neurocomputing. 155, 277–285 (2015)
43.
go back to reference Beidokhti, R.S., Malek, A.: Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J. Franklin. Inst. 346(9), 898–913 (2009)MathSciNetMATH Beidokhti, R.S., Malek, A.: Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J. Franklin. Inst. 346(9), 898–913 (2009)MathSciNetMATH
44.
go back to reference Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)MathSciNetMATH Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)MathSciNetMATH
45.
go back to reference Weinan, E., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5(4), 349–380 (2017)MathSciNetMATH Weinan, E., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5(4), 349–380 (2017)MathSciNetMATH
46.
go back to reference Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis Volume VII, pp. 713–1020. North-Holland, Amsterdam (2000)MATH Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis Volume VII, pp. 713–1020. North-Holland, Amsterdam (2000)MATH
47.
go back to reference Spalding, D.B.: A novel finite difference formulation for differential expressions involving both first and second derivatives. Int. J. Numer. Methods Eng. 4(4), 551–559 (1972) Spalding, D.B.: A novel finite difference formulation for differential expressions involving both first and second derivatives. Int. J. Numer. Methods Eng. 4(4), 551–559 (1972)
48.
go back to reference Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2015)MathSciNetMATH Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2015)MathSciNetMATH
49.
go back to reference Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. Math. Mod. Numer. Anal. 37, 319–338 (2003)MathSciNetMATH Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. Math. Mod. Numer. Anal. 37, 319–338 (2003)MathSciNetMATH
50.
go back to reference Yu, H., Wilamowski, B.M.: Levenberg–Marquardt training. Ind. Electron. Handb. 5(12), 1–12 (2011) Yu, H., Wilamowski, B.M.: Levenberg–Marquardt training. Ind. Electron. Handb. 5(12), 1–12 (2011)
51.
go back to reference Tan, H.H., Lim, K.H.: Review of second-order optimization techniques in artificial neural networks backpropagation. In: IOP Conference Series: Materials Science and Engineering, vol. 495, no. 1, p. 012003. IOP Publishing (2019) Tan, H.H., Lim, K.H.: Review of second-order optimization techniques in artificial neural networks backpropagation. In: IOP Conference Series: Materials Science and Engineering, vol. 495, no. 1, p. 012003. IOP Publishing (2019)
52.
go back to reference Hayashi, Y., Sakata, M., Gallant, S. I.: Multi-layer versus single-layer neural networks and an application to reading hand-stamped characters. In: International Neural Network Conference, pp. 781–784. Springer, Dordrecht (1990) Hayashi, Y., Sakata, M., Gallant, S. I.: Multi-layer versus single-layer neural networks and an application to reading hand-stamped characters. In: International Neural Network Conference, pp. 781–784. Springer, Dordrecht (1990)
53.
go back to reference Al-kaf, H.A.G., Chia, K.S., Alduais, N.A.M.: A comparison between single layer and multilayer artificial neural networks in predicting diesel fuel properties using near infrared spectrum. Petr. Sci. Technol. 36(6), 411–418 (2018) Al-kaf, H.A.G., Chia, K.S., Alduais, N.A.M.: A comparison between single layer and multilayer artificial neural networks in predicting diesel fuel properties using near infrared spectrum. Petr. Sci. Technol. 36(6), 411–418 (2018)
54.
go back to reference Woodward, D.E., Tyson, R., Myerscough, M.R., Murray, J.D., Budrene, E.O., Berg, H.C.: Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68(5), 2181–2189 (1995) Woodward, D.E., Tyson, R., Myerscough, M.R., Murray, J.D., Budrene, E.O., Berg, H.C.: Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68(5), 2181–2189 (1995)
55.
go back to reference Thar, R., Kühl, M.: Complex pattern formation of marine gradient bacteria explained by a simple computer model. FEMS Microbiol. Lett. 246(1), 75–79 (2005) Thar, R., Kühl, M.: Complex pattern formation of marine gradient bacteria explained by a simple computer model. FEMS Microbiol. Lett. 246(1), 75–79 (2005)
56.
go back to reference Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns of chemotactic bacteria. Nature 376, 49–53 (1995) Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns of chemotactic bacteria. Nature 376, 49–53 (1995)
Metadata
Title
Linearized Implicit Methods Based on a Single-Layer Neural Network: Application to Keller–Segel Models
Author
M. Benzakour Amine
Publication date
01-10-2020
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2020
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01310-0

Other articles of this Issue 1/2020

Journal of Scientific Computing 1/2020 Go to the issue

Premium Partner