Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.10.2020

Linearized Implicit Methods Based on a Single-Layer Neural Network: Application to Keller–Segel Models

verfasst von: M. Benzakour Amine

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is concerned with numerical approximation of some two-dimensional Keller–Segel chemotaxis models, especially those generating pattern formations. The numerical resolution of such nonlinear parabolic–parabolic or parabolic–elliptic systems of partial differential equations consumes a significant computational time when solved with fully implicit schemes. Standard linearized semi-implicit schemes, however, require reasonable computational time, but suffer from lack of accuracy. In this work, two methods based on a single-layer neural network are developed to build linearized implicit schemes: a basic one called the each step training linearized implicit method and a more efficient one, the selected steps training linearized implicit method. The proposed schemes, which make use also of a spatial finite volume method with a hybrid difference scheme approximation for convection–diffusion fluxes, are first derived for a chemotaxis system arising in embryology. The convergence of the numerical solutions to a corresponding weak solution of the studied system is established. Then the proposed methods are applied to a number of chemotaxis models, and several numerical tests are performed to illustrate their accuracy, efficiency and robustness. Generalization of the developed methods to other nonlinear partial differential equations is straightforward.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)MathSciNetMATH Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)MathSciNetMATH
2.
Zurück zum Zitat Painter, K.J.: Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 481, 162–182 (2019)MathSciNetMATH Painter, K.J.: Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 481, 162–182 (2019)MathSciNetMATH
3.
Zurück zum Zitat Akhmouch, M., Benzakour Amine, M.: A time semi-exponentially fitted scheme for chemotaxis-growth models. Calcolo 54(2), 609–641 (2017)MathSciNetMATH Akhmouch, M., Benzakour Amine, M.: A time semi-exponentially fitted scheme for chemotaxis-growth models. Calcolo 54(2), 609–641 (2017)MathSciNetMATH
4.
Zurück zum Zitat Jüngel, A., Leingang, O.: Blow-up of solutions to semi-discrete parabolic-elliptic Keller–Segel models. Discrete Contin. Dyn. Syst. Ser. B 24, 609–641 (2019)MathSciNetMATH Jüngel, A., Leingang, O.: Blow-up of solutions to semi-discrete parabolic-elliptic Keller–Segel models. Discrete Contin. Dyn. Syst. Ser. B 24, 609–641 (2019)MathSciNetMATH
6.
Zurück zum Zitat Xiao, X., Feng, X., He, Y.: Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method. Comput. Math. Appl. 78(1), 20–34 (2019)MathSciNetMATH Xiao, X., Feng, X., He, Y.: Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method. Comput. Math. Appl. 78(1), 20–34 (2019)MathSciNetMATH
7.
Zurück zum Zitat Zhang, Y., Zhang, J.: The splitting mixed element method for parabolic equation and its application in chemotaxis model. Appl. Math. Comput. 313, 287–300 (2017)MathSciNetMATH Zhang, Y., Zhang, J.: The splitting mixed element method for parabolic equation and its application in chemotaxis model. Appl. Math. Comput. 313, 287–300 (2017)MathSciNetMATH
8.
Zurück zum Zitat Sulman, M., Nguyen, T.: A positivity preserving moving mesh finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 80(1), 649–666 (2019)MathSciNetMATH Sulman, M., Nguyen, T.: A positivity preserving moving mesh finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 80(1), 649–666 (2019)MathSciNetMATH
9.
Zurück zum Zitat Zhang, R., Zhu, J., Loula, A.F., Yu, X.: Operator splitting combined with positivity-preserving discontinuous Galerkin method for the chemotaxis model. J. Comput. Appl. Math. 302, 312–326 (2016)MathSciNetMATH Zhang, R., Zhu, J., Loula, A.F., Yu, X.: Operator splitting combined with positivity-preserving discontinuous Galerkin method for the chemotaxis model. J. Comput. Appl. Math. 302, 312–326 (2016)MathSciNetMATH
10.
Zurück zum Zitat Liu, J.G., Wang, L., Zhou, Z.: Positivity-preserving and asymptotic preserving method for 2D Keller–Segel equations. Math. Comput. 87(311), 1165–1189 (2018)MATH Liu, J.G., Wang, L., Zhou, Z.: Positivity-preserving and asymptotic preserving method for 2D Keller–Segel equations. Math. Comput. 87(311), 1165–1189 (2018)MATH
11.
Zurück zum Zitat Li, X.H., Shu, C.W., Yang, Y.: Local discontinuous Galerkin method for the Keller–Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)MathSciNetMATH Li, X.H., Shu, C.W., Yang, Y.: Local discontinuous Galerkin method for the Keller–Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)MathSciNetMATH
12.
Zurück zum Zitat Dehghan, M., Abbaszadeh, M., Mohebbi, A.: A meshless technique based on the local radial basis functions collocation method for solving parabolic-parabolic Patlak-Keller-Segel chemotaxis model. Eng. Anal. Bound. Elem. 56, 129–144 (2015)MathSciNetMATH Dehghan, M., Abbaszadeh, M., Mohebbi, A.: A meshless technique based on the local radial basis functions collocation method for solving parabolic-parabolic Patlak-Keller-Segel chemotaxis model. Eng. Anal. Bound. Elem. 56, 129–144 (2015)MathSciNetMATH
13.
Zurück zum Zitat Cancès, C., Ibrahim, M., Saad, M.: Positive nonlinear CVFE scheme for degenerate anisotropic Keller–Segel system. SMAI J. Comput. Math. 3, 1–28 (2017) MathSciNetMATH Cancès, C., Ibrahim, M., Saad, M.: Positive nonlinear CVFE scheme for degenerate anisotropic Keller–Segel system. SMAI J. Comput. Math. 3, 1–28 (2017) MathSciNetMATH
14.
Zurück zum Zitat Oster, G.F., Murray, J.D.: Pattern formation models and developmental constraints. J. Expl. Zool. 251, 186–202 (1989) Oster, G.F., Murray, J.D.: Pattern formation models and developmental constraints. J. Expl. Zool. 251, 186–202 (1989)
15.
Zurück zum Zitat Murray, J.D., Deeming, D.C., Ferguson, M.W.J.: Size-dependent pigmentation-pattern formation in embryos of Alligator mississippiensis: time of initiation of pattern generation mechanism. Proc. R. Soc. B 239, 279–293 (1990) Murray, J.D., Deeming, D.C., Ferguson, M.W.J.: Size-dependent pigmentation-pattern formation in embryos of Alligator mississippiensis: time of initiation of pattern generation mechanism. Proc. R. Soc. B 239, 279–293 (1990)
16.
Zurück zum Zitat Akhmouch, M., Benzakour Amine, M.: A corrected decoupled scheme for chemotaxis models. J. Comput. Appl. Math. 323, 36–52 (2017)MathSciNetMATH Akhmouch, M., Benzakour Amine, M.: A corrected decoupled scheme for chemotaxis models. J. Comput. Appl. Math. 323, 36–52 (2017)MathSciNetMATH
17.
Zurück zum Zitat Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)MathSciNetMATH Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)MathSciNetMATH
18.
Zurück zum Zitat Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comput. Appl. Math. 239, 290–303 (2013)MathSciNetMATH Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comput. Appl. Math. 239, 290–303 (2013)MathSciNetMATH
19.
Zurück zum Zitat Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. Comput. Methods Appl. Math. 10(2), 219–232 (2010)MathSciNetMATH Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. Comput. Methods Appl. Math. 10(2), 219–232 (2010)MathSciNetMATH
20.
Zurück zum Zitat Akhmouch, M., Benzakour Amine, M.: Semi-implicit finite volume schemes for a chemotaxis-growth model. Indag. Math. 27(3), 702–720 (2016)MathSciNetMATH Akhmouch, M., Benzakour Amine, M.: Semi-implicit finite volume schemes for a chemotaxis-growth model. Indag. Math. 27(3), 702–720 (2016)MathSciNetMATH
21.
Zurück zum Zitat Horstmann, D.: From 1970 until now: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. Dtsch. Math. Ver. 105, 103–165 (2003)MATH Horstmann, D.: From 1970 until now: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. Dtsch. Math. Ver. 105, 103–165 (2003)MATH
22.
Zurück zum Zitat Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)MathSciNetMATH Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)MathSciNetMATH
23.
Zurück zum Zitat Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)MATH Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)MATH
24.
Zurück zum Zitat Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Diff. Eqn. 35, 1516–1537 (2010)MathSciNetMATH Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Diff. Eqn. 35, 1516–1537 (2010)MathSciNetMATH
25.
Zurück zum Zitat Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26(4), 280–301 (2001)MathSciNetMATH Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26(4), 280–301 (2001)MathSciNetMATH
26.
Zurück zum Zitat Painter, K.J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Quart. 10(4), 501–543 (2002)MathSciNetMATH Painter, K.J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Quart. 10(4), 501–543 (2002)MathSciNetMATH
27.
Zurück zum Zitat Murray, J.D.: Mathematical Biology, vol. 2, 3rd edn. Springer, Berlin (2003)MATH Murray, J.D.: Mathematical Biology, vol. 2, 3rd edn. Springer, Berlin (2003)MATH
28.
Zurück zum Zitat Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235(14), 4015–4031 (2011)MathSciNetMATH Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235(14), 4015–4031 (2011)MathSciNetMATH
29.
Zurück zum Zitat Chamoun, G., Saad, M., Talhouk, R.: Monotone combined edge finite volume-finite element scheme for anisotropic Keller–Segel model. Numer. Methods Partial Differ. Equ. 30(3), 1030–1065 (2014)MathSciNetMATH Chamoun, G., Saad, M., Talhouk, R.: Monotone combined edge finite volume-finite element scheme for anisotropic Keller–Segel model. Numer. Methods Partial Differ. Equ. 30(3), 1030–1065 (2014)MathSciNetMATH
30.
Zurück zum Zitat Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007)MathSciNetMATH Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007)MathSciNetMATH
31.
Zurück zum Zitat Zhou, G., Saito, N.: Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis. Numerische Mathematik 135(1), 265–311 (2017)MathSciNetMATH Zhou, G., Saito, N.: Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis. Numerische Mathematik 135(1), 265–311 (2017)MathSciNetMATH
32.
Zurück zum Zitat Ibrahim, M., Saad, M.: On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model. Comput. Math. Appl. 68(9), 1032–1051 (2014)MathSciNetMATH Ibrahim, M., Saad, M.: On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model. Comput. Math. Appl. 68(9), 1032–1051 (2014)MathSciNetMATH
33.
Zurück zum Zitat Filbet, F.: A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104(4), 457–488 (2006)MathSciNetMATH Filbet, F.: A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104(4), 457–488 (2006)MathSciNetMATH
34.
Zurück zum Zitat Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)
35.
Zurück zum Zitat Lagaris, I.E., Likas, A.C., Papageorgiou, D.G.: Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans. Neural Netw. 11(5), 1041–1049 (2000) Lagaris, I.E., Likas, A.C., Papageorgiou, D.G.: Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans. Neural Netw. 11(5), 1041–1049 (2000)
36.
Zurück zum Zitat Shirvany, Y., Hayati, M., Moradian, R.: Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Appl. Soft Comput. 9(1), 20–29 (2009) Shirvany, Y., Hayati, M., Moradian, R.: Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Appl. Soft Comput. 9(1), 20–29 (2009)
37.
Zurück zum Zitat Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14(2), 185–199 (2001)MATH Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14(2), 185–199 (2001)MATH
38.
Zurück zum Zitat Aminataei, A., Mazarei, M.M.: Numerical solution of Poisson’s equation using radial basis function networks on the polar coordinate. Comput. Math. Appl. 56(11), 2887–2895 (2008)MathSciNetMATH Aminataei, A., Mazarei, M.M.: Numerical solution of Poisson’s equation using radial basis function networks on the polar coordinate. Comput. Math. Appl. 56(11), 2887–2895 (2008)MathSciNetMATH
39.
Zurück zum Zitat Jianyu, L., Siwei, L., Yingjian, Q., Yaping, H.: Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Netw. 16, 729–734 (2003) Jianyu, L., Siwei, L., Yingjian, Q., Yaping, H.: Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Netw. 16, 729–734 (2003)
40.
Zurück zum Zitat Sun, H., Hou, M., Yang, Y., Zhang, T., Weng, F., Han, F.: Solving partial differential equation based on Bernstein neural network and extreme learning machine algorithm. Neural Process. Lett. 50(2), 1153–1172 (2019) Sun, H., Hou, M., Yang, Y., Zhang, T., Weng, F., Han, F.: Solving partial differential equation based on Bernstein neural network and extreme learning machine algorithm. Neural Process. Lett. 50(2), 1153–1172 (2019)
41.
Zurück zum Zitat Mall, S., Chakraverty, S.: Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process. Lett. 45(3), 825–840 (2017) Mall, S., Chakraverty, S.: Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process. Lett. 45(3), 825–840 (2017)
42.
Zurück zum Zitat Rudd, K., Ferrari, S.: A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks. Neurocomputing. 155, 277–285 (2015) Rudd, K., Ferrari, S.: A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks. Neurocomputing. 155, 277–285 (2015)
43.
Zurück zum Zitat Beidokhti, R.S., Malek, A.: Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J. Franklin. Inst. 346(9), 898–913 (2009)MathSciNetMATH Beidokhti, R.S., Malek, A.: Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J. Franklin. Inst. 346(9), 898–913 (2009)MathSciNetMATH
44.
Zurück zum Zitat Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)MathSciNetMATH Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)MathSciNetMATH
45.
Zurück zum Zitat Weinan, E., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5(4), 349–380 (2017)MathSciNetMATH Weinan, E., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5(4), 349–380 (2017)MathSciNetMATH
46.
Zurück zum Zitat Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis Volume VII, pp. 713–1020. North-Holland, Amsterdam (2000)MATH Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis Volume VII, pp. 713–1020. North-Holland, Amsterdam (2000)MATH
47.
Zurück zum Zitat Spalding, D.B.: A novel finite difference formulation for differential expressions involving both first and second derivatives. Int. J. Numer. Methods Eng. 4(4), 551–559 (1972) Spalding, D.B.: A novel finite difference formulation for differential expressions involving both first and second derivatives. Int. J. Numer. Methods Eng. 4(4), 551–559 (1972)
48.
Zurück zum Zitat Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2015)MathSciNetMATH Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2015)MathSciNetMATH
49.
Zurück zum Zitat Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. Math. Mod. Numer. Anal. 37, 319–338 (2003)MathSciNetMATH Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. Math. Mod. Numer. Anal. 37, 319–338 (2003)MathSciNetMATH
50.
Zurück zum Zitat Yu, H., Wilamowski, B.M.: Levenberg–Marquardt training. Ind. Electron. Handb. 5(12), 1–12 (2011) Yu, H., Wilamowski, B.M.: Levenberg–Marquardt training. Ind. Electron. Handb. 5(12), 1–12 (2011)
51.
Zurück zum Zitat Tan, H.H., Lim, K.H.: Review of second-order optimization techniques in artificial neural networks backpropagation. In: IOP Conference Series: Materials Science and Engineering, vol. 495, no. 1, p. 012003. IOP Publishing (2019) Tan, H.H., Lim, K.H.: Review of second-order optimization techniques in artificial neural networks backpropagation. In: IOP Conference Series: Materials Science and Engineering, vol. 495, no. 1, p. 012003. IOP Publishing (2019)
52.
Zurück zum Zitat Hayashi, Y., Sakata, M., Gallant, S. I.: Multi-layer versus single-layer neural networks and an application to reading hand-stamped characters. In: International Neural Network Conference, pp. 781–784. Springer, Dordrecht (1990) Hayashi, Y., Sakata, M., Gallant, S. I.: Multi-layer versus single-layer neural networks and an application to reading hand-stamped characters. In: International Neural Network Conference, pp. 781–784. Springer, Dordrecht (1990)
53.
Zurück zum Zitat Al-kaf, H.A.G., Chia, K.S., Alduais, N.A.M.: A comparison between single layer and multilayer artificial neural networks in predicting diesel fuel properties using near infrared spectrum. Petr. Sci. Technol. 36(6), 411–418 (2018) Al-kaf, H.A.G., Chia, K.S., Alduais, N.A.M.: A comparison between single layer and multilayer artificial neural networks in predicting diesel fuel properties using near infrared spectrum. Petr. Sci. Technol. 36(6), 411–418 (2018)
54.
Zurück zum Zitat Woodward, D.E., Tyson, R., Myerscough, M.R., Murray, J.D., Budrene, E.O., Berg, H.C.: Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68(5), 2181–2189 (1995) Woodward, D.E., Tyson, R., Myerscough, M.R., Murray, J.D., Budrene, E.O., Berg, H.C.: Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68(5), 2181–2189 (1995)
55.
Zurück zum Zitat Thar, R., Kühl, M.: Complex pattern formation of marine gradient bacteria explained by a simple computer model. FEMS Microbiol. Lett. 246(1), 75–79 (2005) Thar, R., Kühl, M.: Complex pattern formation of marine gradient bacteria explained by a simple computer model. FEMS Microbiol. Lett. 246(1), 75–79 (2005)
56.
Zurück zum Zitat Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns of chemotactic bacteria. Nature 376, 49–53 (1995) Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns of chemotactic bacteria. Nature 376, 49–53 (1995)
Metadaten
Titel
Linearized Implicit Methods Based on a Single-Layer Neural Network: Application to Keller–Segel Models
verfasst von
M. Benzakour Amine
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01310-0

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner