Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.10.2020

An Efficient Spline Collocation Method for a Nonlinear Fourth-Order Reaction Subdiffusion Equation

verfasst von: Haixiang Zhang, Xuehua Yang, Da Xu

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The nonlinear fourth-order reaction–subdiffusion equation whose solutions display a typical initial weak singularity is considered. A new analytical technique is introduced to analyze orthogonal spline collocation (OSC) method based on L1 scheme on graded mesh. By introducing a discrete convolution kernel and discrete fractional Grönwall inequality, convergence of the scheme is proved rigorously. This novel analytical technique can provide new insights in analyzing other time fractional fourth-order differential equations with weakly singular solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hao, Z., Cao, W.: An improved algorithm based on finite difference schemes for fractional boundary value problems with nonsmooth solution. J. Sci. Comput. 73, 395–415 (2017)MathSciNetCrossRef Hao, Z., Cao, W.: An improved algorithm based on finite difference schemes for fractional boundary value problems with nonsmooth solution. J. Sci. Comput. 73, 395–415 (2017)MathSciNetCrossRef
2.
Zurück zum Zitat Liao, H.-L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRef Liao, H.-L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRef
3.
Zurück zum Zitat Li, M., Zhao, J., Huang, C., Chen, S.: Nonconforming virtual element method for the time fractional reaction–subdiffusion equation with non-smooth data. J. Sci. Comput. 81, 1823–1859 (2019)MathSciNetCrossRef Li, M., Zhao, J., Huang, C., Chen, S.: Nonconforming virtual element method for the time fractional reaction–subdiffusion equation with non-smooth data. J. Sci. Comput. 81, 1823–1859 (2019)MathSciNetCrossRef
4.
Zurück zum Zitat Zhai, S., Wang, D., Weng, Z., Zhao, X.: Error analysis and numerical simulations of strang splitting method for space fractional nonlinear Schrödinger equation. J. Sci. Comput. 81, 965–989 (2019)MathSciNetCrossRef Zhai, S., Wang, D., Weng, Z., Zhao, X.: Error analysis and numerical simulations of strang splitting method for space fractional nonlinear Schrödinger equation. J. Sci. Comput. 81, 965–989 (2019)MathSciNetCrossRef
5.
Zurück zum Zitat Duan, B., Zheng, Z.: An exponentially convergent scheme in time for time fractional diffusion equations with non-smooth initial data. J. Sci. Comput. 80, 717–742 (2019)MathSciNetCrossRef Duan, B., Zheng, Z.: An exponentially convergent scheme in time for time fractional diffusion equations with non-smooth initial data. J. Sci. Comput. 80, 717–742 (2019)MathSciNetCrossRef
6.
Zurück zum Zitat Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)MathSciNetCrossRef Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)MathSciNetCrossRef
7.
Zurück zum Zitat Xing, Y., Yan, Y.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)MathSciNetCrossRef Xing, Y., Yan, Y.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)MathSciNetCrossRef
8.
Zurück zum Zitat Du, Y., Liu, Y., Li, H., Fang, Z., He, S.: Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J. Comput. Phys. 344, 108–126 (2017)MathSciNetCrossRef Du, Y., Liu, Y., Li, H., Fang, Z., He, S.: Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J. Comput. Phys. 344, 108–126 (2017)MathSciNetCrossRef
9.
Zurück zum Zitat Lyu, P., Vong, S.: A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin–Bona–Mahony equation. J. Sci. Comput. 80, 1607–1628 (2019)MathSciNetCrossRef Lyu, P., Vong, S.: A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin–Bona–Mahony equation. J. Sci. Comput. 80, 1607–1628 (2019)MathSciNetCrossRef
10.
Zurück zum Zitat Vong, S., Wang, Z.: Compact finite difference scheme for the fourth-order fractional subdiffusion system. Adv. Appl. Math. Mech. 6, 419–435 (2014)MathSciNetCrossRef Vong, S., Wang, Z.: Compact finite difference scheme for the fourth-order fractional subdiffusion system. Adv. Appl. Math. Mech. 6, 419–435 (2014)MathSciNetCrossRef
11.
Zurück zum Zitat Sun, H., Zhao, X., Sun, Z.: The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation. J. Sci. Comput. 78, 467–498 (2019)MathSciNetCrossRef Sun, H., Zhao, X., Sun, Z.: The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation. J. Sci. Comput. 78, 467–498 (2019)MathSciNetCrossRef
12.
Zurück zum Zitat Zhong, J., Liao, H.-L., Ji, B., Zhang, L.M.: A fourth-order compact solver for fractional-in-time fourth-order diffusion equations. arXiv:1907.01708 (2019) Zhong, J., Liao, H.-L., Ji, B., Zhang, L.M.: A fourth-order compact solver for fractional-in-time fourth-order diffusion equations. arXiv:​1907.​01708 (2019)
13.
Zurück zum Zitat Shen, J., Sheng, C.: An efficient space-time method for time fractional diffusion equation. J. Sci. Comput. 81, 1088–1110 (2019)MathSciNetCrossRef Shen, J., Sheng, C.: An efficient space-time method for time fractional diffusion equation. J. Sci. Comput. 81, 1088–1110 (2019)MathSciNetCrossRef
14.
Zurück zum Zitat Liao, H.-L., Yan, Y., Zhang, J.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)MathSciNetCrossRef Liao, H.-L., Yan, Y., Zhang, J.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)MathSciNetCrossRef
15.
Zurück zum Zitat Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80, 403–419 (2019)MathSciNetCrossRef Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80, 403–419 (2019)MathSciNetCrossRef
16.
Zurück zum Zitat Li, M., Huang, C., Ming, W.: A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations. Numer. Algor. 83, 99–124 (2020)CrossRef Li, M., Huang, C., Ming, W.: A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations. Numer. Algor. 83, 99–124 (2020)CrossRef
17.
Zurück zum Zitat Ji, C., Dai, W., Sun, Z.: Numerical schemes for solving the time-fractional Dual-Phase-Lagging heat conduction model in a double-layered nanoscale thin film. J. Sci. Comput. 81, 1767–1800 (2019)MathSciNetCrossRef Ji, C., Dai, W., Sun, Z.: Numerical schemes for solving the time-fractional Dual-Phase-Lagging heat conduction model in a double-layered nanoscale thin film. J. Sci. Comput. 81, 1767–1800 (2019)MathSciNetCrossRef
18.
Zurück zum Zitat Xu, D., Guo, J., Qiu, W.: Time two-grid algorithm based on finite difference method for two-dimensional nonlinear fractional evolution equations. Appl. Numer. Math. 152, 169–184 (2020)MathSciNetCrossRef Xu, D., Guo, J., Qiu, W.: Time two-grid algorithm based on finite difference method for two-dimensional nonlinear fractional evolution equations. Appl. Numer. Math. 152, 169–184 (2020)MathSciNetCrossRef
19.
Zurück zum Zitat Deng, B., Zhang, Z., Zhao, X.: Superconvergence points for the spectral interpolation of Riesz fractional derivatives. J. Sci. Comput. 81, 1577–1601 (2019)MathSciNetCrossRef Deng, B., Zhang, Z., Zhao, X.: Superconvergence points for the spectral interpolation of Riesz fractional derivatives. J. Sci. Comput. 81, 1577–1601 (2019)MathSciNetCrossRef
20.
Zurück zum Zitat Ji, C., Sun, Z., Hao, Z.: Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions. J. Sci. Comput. 66, 1148–1174 (2015)MathSciNetCrossRef Ji, C., Sun, Z., Hao, Z.: Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions. J. Sci. Comput. 66, 1148–1174 (2015)MathSciNetCrossRef
21.
Zurück zum Zitat Qiao, L., Wang, Z., Xu, D.: An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 151, 199–212 (2020)MathSciNetCrossRef Qiao, L., Wang, Z., Xu, D.: An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 151, 199–212 (2020)MathSciNetCrossRef
22.
Zurück zum Zitat Qiao, L., Xu, D.: BDF ADI orthogonal spline collocation scheme for the fractional integro-differential equation with two weakly singular kernels. Comput. Math. Appl. 78, 3807–3820 (2019)MathSciNetCrossRef Qiao, L., Xu, D.: BDF ADI orthogonal spline collocation scheme for the fractional integro-differential equation with two weakly singular kernels. Comput. Math. Appl. 78, 3807–3820 (2019)MathSciNetCrossRef
23.
Zurück zum Zitat Qiao, L., Xu, D., Yan, Y.: High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. Math. Method Appl. Sci. 43, 5162–5178 (2020)MathSciNetCrossRef Qiao, L., Xu, D., Yan, Y.: High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. Math. Method Appl. Sci. 43, 5162–5178 (2020)MathSciNetCrossRef
24.
Zurück zum Zitat Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, 141–160 (2012)MathSciNetCrossRef Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, 141–160 (2012)MathSciNetCrossRef
25.
Zurück zum Zitat Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRef Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRef
26.
Zurück zum Zitat An, Y., Liu, R.: Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation. Nonlinear Anal. 68, 3325–3331 (2008)MathSciNetCrossRef An, Y., Liu, R.: Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation. Nonlinear Anal. 68, 3325–3331 (2008)MathSciNetCrossRef
27.
Zurück zum Zitat Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRef Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRef
28.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications, vol 198 of Mathematics in Science and Engineering. Academic Press, Inc, San Diego (1999) Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications, vol 198 of Mathematics in Science and Engineering. Academic Press, Inc, San Diego (1999)
29.
Zurück zum Zitat Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)MathSciNetCrossRef Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)MathSciNetCrossRef
30.
Zurück zum Zitat Percell, P., Wheeler, M.F.: A \(C^1\) finite element collocation method for elliptic equations. SIAM J. Numer. Anal. 17, 605–622 (1980)MathSciNetCrossRef Percell, P., Wheeler, M.F.: A \(C^1\) finite element collocation method for elliptic equations. SIAM J. Numer. Anal. 17, 605–622 (1980)MathSciNetCrossRef
31.
Zurück zum Zitat Douglas, Jr., Dupont, T.: Collocation Methods for Parabolic Equations in a Single Space Variable. Lecture Notes in Mathematics, Vol. 385. Springer, New York (1974) Douglas, Jr., Dupont, T.: Collocation Methods for Parabolic Equations in a Single Space Variable. Lecture Notes in Mathematics, Vol. 385. Springer, New York (1974)
32.
Zurück zum Zitat Fernandes, R.I., Fairweather, G.: Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables. Numer. Methods Part. Differ. Equ. 9, 191–211 (1993)MathSciNetCrossRef Fernandes, R.I., Fairweather, G.: Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables. Numer. Methods Part. Differ. Equ. 9, 191–211 (1993)MathSciNetCrossRef
33.
Zurück zum Zitat Fairweather, G., Yang, X.H., Xu, D., Zhang, H.Z.: An ADI Crank–Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation. J. Sci. Comput. 65, 1217–1239 (2015)MathSciNetCrossRef Fairweather, G., Yang, X.H., Xu, D., Zhang, H.Z.: An ADI Crank–Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation. J. Sci. Comput. 65, 1217–1239 (2015)MathSciNetCrossRef
34.
Zurück zum Zitat Liao, H.-L., Mclean, W., Zhang, J.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)MathSciNetCrossRef Liao, H.-L., Mclean, W., Zhang, J.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)MathSciNetCrossRef
Metadaten
Titel
An Efficient Spline Collocation Method for a Nonlinear Fourth-Order Reaction Subdiffusion Equation
verfasst von
Haixiang Zhang
Xuehua Yang
Da Xu
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01308-8

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner