Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.10.2020

An Adaptive Multiresolution Interior Penalty Discontinuous Galerkin Method for Wave Equations in Second Order Form

verfasst von: Juntao Huang, Yuan Liu, Wei Guo, Zhanjing Tao, Yingda Cheng

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a class of adaptive multiresolution (also called adaptive sparse grid) discontinuous Galerkin (DG) methods for simulating scalar wave equations in second order form in space. The two key ingredients of the schemes include an interior penalty DG formulation in the adaptive function space and two classes of multiwavelets for achieving multiresolution. In particular, the orthonormal Alpert’s multiwavelets are used to express the DG solution in terms of a hierarchical structure, and the interpolatory multiwavelets are further introduced to enhance computational efficiency in the presence of variable wave speed or nonlinear source. Some theoretical results on stability and accuracy of the proposed method are presented. Benchmark numerical tests in 2D and 3D are provided to validate the performance of the method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27(1–3), 5–40 (2006)MathSciNetMATHCrossRef Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27(1–3), 5–40 (2006)MathSciNetMATHCrossRef
2.
Zurück zum Zitat Alpert, B.: A class of bases in \(L^2\) for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246–262 (1993)MathSciNetMATHCrossRef Alpert, B.: A class of bases in \(L^2\) for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246–262 (1993)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Appelö, D., Hagstrom, T.: A new discontinuous Galerkin formulation for wave equations in second-order form. SIAM J. Numer. Anal. 53(6), 2705–2726 (2015)MathSciNetMATHCrossRef Appelö, D., Hagstrom, T.: A new discontinuous Galerkin formulation for wave equations in second-order form. SIAM J. Numer. Anal. 53(6), 2705–2726 (2015)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)MathSciNetMATHCrossRef Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)MathSciNetMATHCrossRef Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)MATHCrossRef Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)MATHCrossRef
7.
Zurück zum Zitat Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)MathSciNetMATHCrossRef Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Bokanowski, O., Garcke, J., Griebel, M., Klompmaker, I.: An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. J. Sci. Comput. 55(3), 575–605 (2013)MathSciNetMATHCrossRef Bokanowski, O., Garcke, J., Griebel, M., Klompmaker, I.: An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. J. Sci. Comput. 55(3), 575–605 (2013)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Brown, D.L., Chesshire, G.S., Henshaw, W.D., Quinlan, D.J.: Overture: an object-oriented software system for solving partial differential equations in serial and parallel environments. Technical report, Los Alamos National Lab., NM (United States) (1997) Brown, D.L., Chesshire, G.S., Henshaw, W.D., Quinlan, D.J.: Overture: an object-oriented software system for solving partial differential equations in serial and parallel environments. Technical report, Los Alamos National Lab., NM (United States) (1997)
11.
Zurück zum Zitat Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)MathSciNetMATHCrossRef Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Calle, J.L.D., Devloo, P.R.B., Gomes, S.M.: Wavelets and adaptive grids for the discontinuous Galerkin method. Numer. Algorithms 39(1–3), 143–154 (2005)MathSciNetMATHCrossRef Calle, J.L.D., Devloo, P.R.B., Gomes, S.M.: Wavelets and adaptive grids for the discontinuous Galerkin method. Numer. Algorithms 39(1–3), 143–154 (2005)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Chou, C.-S., Shu, C.-W., Xing, Y.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014)MathSciNetMATHCrossRef Chou, C.-S., Shu, C.-W., Xing, Y.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)MathSciNetMATH Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)MathSciNetMATH
15.
Zurück zum Zitat Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, vol. 11, pp. 3–50. Springer, Berlin (2000)MATHCrossRef Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, vol. 11, pp. 3–50. Springer, Berlin (2000)MATHCrossRef
16.
Zurück zum Zitat Cohen, G.C.: Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2002)MATHCrossRef Cohen, G.C.: Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2002)MATHCrossRef
17.
Zurück zum Zitat Etienne, V., Chaljub, E., Virieux, J., Glinsky, N.: An hp-adaptive discontinuous Galerkin finite-element method for 3-d elastic wave modelling. Geophys. J. Int. 183(2), 941–962 (2010)CrossRef Etienne, V., Chaljub, E., Virieux, J., Glinsky, N.: An hp-adaptive discontinuous Galerkin finite-element method for 3-d elastic wave modelling. Geophys. J. Int. 183(2), 941–962 (2010)CrossRef
18.
Zurück zum Zitat Gottlieb, D., Orszag, S.A.: Numerical Analysis Of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977)MATHCrossRef Gottlieb, D., Orszag, S.A.: Numerical Analysis Of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977)MATHCrossRef
19.
Zurück zum Zitat Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetMATHCrossRef Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)MathSciNetMATHCrossRef Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Guo, W., Cheng, Y.: A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations. SIAM J. Sci. Comput. 38(6), A3381–A3409 (2016)MathSciNetMATHCrossRef Guo, W., Cheng, Y.: A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations. SIAM J. Sci. Comput. 38(6), A3381–A3409 (2016)MathSciNetMATHCrossRef
22.
Zurück zum Zitat Guo, W., Cheng, Y.: An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multidimensions. SIAM J. Sci. Comput. 39(6), A2962–A2992 (2017)MathSciNetMATHCrossRef Guo, W., Cheng, Y.: An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multidimensions. SIAM J. Sci. Comput. 39(6), A2962–A2992 (2017)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods, vol. 24. Wiley, Hoboken (1995)MATH Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods, vol. 24. Wiley, Hoboken (1995)MATH
24.
Zurück zum Zitat Henshaw, W.D.: A high-order accurate parallel solver for Maxwell’s equations on overlapping grids. SIAM J. Sci. Comput. 28(5), 1730–1765 (2006)MathSciNetMATHCrossRef Henshaw, W.D.: A high-order accurate parallel solver for Maxwell’s equations on overlapping grids. SIAM J. Sci. Comput. 28(5), 1730–1765 (2006)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Hesthaven, J., Warburton, T.: Nodal high-order methods on unstructured grids. I time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002)MathSciNetMATHCrossRef Hesthaven, J., Warburton, T.: Nodal high-order methods on unstructured grids. I time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Hovhannisyan, N., Müller, S., Schäfer, R.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Math. Comput. 83(285), 113–151 (2014)MathSciNetMATHCrossRef Hovhannisyan, N., Müller, S., Schäfer, R.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Math. Comput. 83(285), 113–151 (2014)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Huang, J., and Cheng, Y.: An adaptive multiresolution discontinuous Galerkin method with artificial viscosity for scalar hyperbolic conservation laws in multidimensions (2019). arXiv preprint arXiv:1906.00829 Huang, J., and Cheng, Y.: An adaptive multiresolution discontinuous Galerkin method with artificial viscosity for scalar hyperbolic conservation laws in multidimensions (2019). arXiv preprint arXiv:​1906.​00829
28.
Zurück zum Zitat Huang, J., Shu, C.-W.: Error estimates to smooth solutions of semi-discrete discontinuous Galerkin methods with quadrature rules for scalar conservation laws. Numer. Methods Partial Differ. Equ. 33(2), 467–488 (2017)MathSciNetMATHCrossRef Huang, J., Shu, C.-W.: Error estimates to smooth solutions of semi-discrete discontinuous Galerkin methods with quadrature rules for scalar conservation laws. Numer. Methods Partial Differ. Equ. 33(2), 467–488 (2017)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Joly, P.: Variational Methods for Time-Dependent Wave Propagation Problems. Volume 31 of Topics in Computational Wave Propagation, pp. 201–264. Springer, Berlin (2003)MATH Joly, P.: Variational Methods for Time-Dependent Wave Propagation Problems. Volume 31 of Topics in Computational Wave Propagation, pp. 201–264. Springer, Berlin (2003)MATH
30.
Zurück zum Zitat Käser, M., Dumbser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshesi. the two-dimensional isotropic case with external source terms. Geophys. J. Int. 166(2), 855–877 (2006)CrossRef Käser, M., Dumbser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshesi. the two-dimensional isotropic case with external source terms. Geophys. J. Int. 166(2), 855–877 (2006)CrossRef
31.
Zurück zum Zitat Mallat, S.: A Wavelet Tour of Signal Processing. Elsevier, Amsterdam (1999)MATH Mallat, S.: A Wavelet Tour of Signal Processing. Elsevier, Amsterdam (1999)MATH
32.
Zurück zum Zitat Reed, W., Hill, T.: Tiangular mesh methods for the neutron transport equation. Technical report, Los Alamos National Laboratory, Los Alamos, NM (1973) Reed, W., Hill, T.: Tiangular mesh methods for the neutron transport equation. Technical report, Los Alamos National Laboratory, Los Alamos, NM (1973)
33.
Zurück zum Zitat Seriani, G., Priolo, E.: Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des. 16(3–4), 337–348 (1994)MathSciNetMATHCrossRef Seriani, G., Priolo, E.: Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des. 16(3–4), 337–348 (1994)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Shen, J., Yu, H.: Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems. SIAM J. Sci. Comput. 32(6), 3228–3250 (2010)MathSciNetMATHCrossRef Shen, J., Yu, H.: Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems. SIAM J. Sci. Comput. 32(6), 3228–3250 (2010)MathSciNetMATHCrossRef
35.
Zurück zum Zitat Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetMATHCrossRef Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Sjögreen, B., Petersson, N.A.: A fourth order accurate finite difference scheme for the elastic wave equation in second order formulation. J. Sci. Comput. 52(1), 17–48 (2012)MathSciNetMATHCrossRef Sjögreen, B., Petersson, N.A.: A fourth order accurate finite difference scheme for the elastic wave equation in second order formulation. J. Sci. Comput. 52(1), 17–48 (2012)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Tao, Z., Jiang, Y., Cheng, Y.: An adaptive high-order piecewise polynomial based sparse grid collocation method with applications (2019). arXiv preprint arXiv:1912.03982 Tao, Z., Jiang, Y., Cheng, Y.: An adaptive high-order piecewise polynomial based sparse grid collocation method with applications (2019). arXiv preprint arXiv:​1912.​03982
38.
Zurück zum Zitat Tromp, J., Komatitsch, D., Liu, Q.: Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3(1), 1–32 (2008)MATH Tromp, J., Komatitsch, D., Liu, Q.: Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3(1), 1–32 (2008)MATH
39.
Zurück zum Zitat Wang, Z., Tang, Q., Guo, W., Cheng, Y.: Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations. J. Comput. Phys. 314, 244–263 (2016)MathSciNetMATHCrossRef Wang, Z., Tang, Q., Guo, W., Cheng, Y.: Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations. J. Comput. Phys. 314, 244–263 (2016)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Wilcox, L.C., Stadler, G., Burstedde, C., Ghattas, O.: A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media. J. Comput. Phys. 229(24), 9373–9396 (2010)MathSciNetMATHCrossRef Wilcox, L.C., Stadler, G., Burstedde, C., Ghattas, O.: A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media. J. Comput. Phys. 229(24), 9373–9396 (2010)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Xing, Y., Chou, C.-S., Shu, C.-W.: Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Probl. Imaging 7(3), 967 (2013)MathSciNetMATHCrossRef Xing, Y., Chou, C.-S., Shu, C.-W.: Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Probl. Imaging 7(3), 967 (2013)MathSciNetMATHCrossRef
42.
Metadaten
Titel
An Adaptive Multiresolution Interior Penalty Discontinuous Galerkin Method for Wave Equations in Second Order Form
verfasst von
Juntao Huang
Yuan Liu
Wei Guo
Zhanjing Tao
Yingda Cheng
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01322-w

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner