Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.10.2020

Non-linear CFL Conditions Issued from the von Neumann Stability Analysis for the Transport Equation

verfasst von: Erwan Deriaz, Pierre Haldenwang

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a theory of the possible non-linear stability conditions encountered in the simulation of convection dominated problems. Its main objective is to study and justify original CFL-like stability conditions thanks to the von Neumann stability analysis. In particular, we exhibit a wide variety of stability conditions of the type \(\Delta t\le C \Delta x^\alpha \) with \(\Delta t\) the time step, \(\Delta x\) the space step, and \(\alpha \) a rational number within the interval [1, 2]. Numerical experiments corroborate these theoretical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Charney, J.G., Fjörtoft, R., von Neumann, J.: Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254 (1950)MathSciNetCrossRef Charney, J.G., Fjörtoft, R., von Neumann, J.: Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254 (1950)MathSciNetCrossRef
2.
Zurück zum Zitat Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.): Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer, Berlin (2000) Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.): Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer, Berlin (2000)
3.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)MathSciNetCrossRef Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)MathSciNetCrossRef
4.
Zurück zum Zitat Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. (1967). Translation from a paper originally appeared in Mathematische Annalen 100, 32–74, (1928) Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. (1967). Translation from a paper originally appeared in Mathematische Annalen 100, 32–74, (1928)
5.
Zurück zum Zitat Crouzeix, M., Mignot, A.L.: Analyse numérique des équations différentielles. Masson editor (1992) Crouzeix, M., Mignot, A.L.: Analyse numérique des équations différentielles. Masson editor (1992)
6.
Zurück zum Zitat Deriaz, E.: Stability conditions for the numerical solution of convection-dominated problems with skew-symmetric discretizations. SIAM J. Numer. Anal. 50(3), 1058–1085 (2012)MathSciNetCrossRef Deriaz, E.: Stability conditions for the numerical solution of convection-dominated problems with skew-symmetric discretizations. SIAM J. Numer. Anal. 50(3), 1058–1085 (2012)MathSciNetCrossRef
7.
Zurück zum Zitat Deriaz, E., Desprès, B., Faccanoni, G., Gostaf, K.P., Imbert-Gérard, L.-M., Sadaka, G., Sart, R.: Magnetic equations with FreeFem++: the Grad–Shafranov equation & the current hole. ESAIM Proc. 32, 76–94 (2011)MathSciNetCrossRef Deriaz, E., Desprès, B., Faccanoni, G., Gostaf, K.P., Imbert-Gérard, L.-M., Sadaka, G., Sart, R.: Magnetic equations with FreeFem++: the Grad–Shafranov equation & the current hole. ESAIM Proc. 32, 76–94 (2011)MathSciNetCrossRef
8.
Zurück zum Zitat Deriaz, E., Kolomenskiy, D.: Stabilité sous condition CFL non linéaire. ESAIM Proc. 35, 114–121 (2012)CrossRef Deriaz, E., Kolomenskiy, D.: Stabilité sous condition CFL non linéaire. ESAIM Proc. 35, 114–121 (2012)CrossRef
9.
Zurück zum Zitat Deriaz, E., Perrier, V.: Direct numerical simulation of turbulence using divergence-free wavelets. SIAM Multiscale Model. Simul. 7(3), 1101–1129 (2008)MathSciNetCrossRef Deriaz, E., Perrier, V.: Direct numerical simulation of turbulence using divergence-free wavelets. SIAM Multiscale Model. Simul. 7(3), 1101–1129 (2008)MathSciNetCrossRef
10.
Zurück zum Zitat Gallinato, O., Poignard, C.: Superconvergent second order Cartesian method for solving free boundary problem for invadopodia formation. J. Comput. Phys. 339, 412–431 (2017)MathSciNetCrossRef Gallinato, O., Poignard, C.: Superconvergent second order Cartesian method for solving free boundary problem for invadopodia formation. J. Comput. Phys. 339, 412–431 (2017)MathSciNetCrossRef
11.
Zurück zum Zitat Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, Berlin (1996)CrossRef Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, Berlin (1996)CrossRef
12.
Zurück zum Zitat Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer Series in Computational Mathematics, vol. 38. Springer, Berlin (2008) Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer Series in Computational Mathematics, vol. 38. Springer, Berlin (2008)
13.
Zurück zum Zitat Grote, M.J., Mehlin, M., Mitkova, T.: Methods and algorithms for scientific computing Runge–Kutta-based explicit local time-stepping methods for wave propagation. SIAM J. Sci. Comput. 37(2), A747–A775 (2015)CrossRef Grote, M.J., Mehlin, M., Mitkova, T.: Methods and algorithms for scientific computing Runge–Kutta-based explicit local time-stepping methods for wave propagation. SIAM J. Sci. Comput. 37(2), A747–A775 (2015)CrossRef
14.
Zurück zum Zitat Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I. Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1987). Second revised edition 1993MATH Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I. Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1987). Second revised edition 1993MATH
15.
Zurück zum Zitat Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1991). Second revised edition 1996MATH Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1991). Second revised edition 1996MATH
16.
Zurück zum Zitat Kolmogorov, A.N.: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941)MathSciNetMATH Kolmogorov, A.N.: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941)MathSciNetMATH
17.
Zurück zum Zitat Kolmogorov, A.N., Yushkevich, A.P. (eds.): Mathematics of the 19th Century, vol. 3 (1998) Kolmogorov, A.N., Yushkevich, A.P. (eds.): Mathematics of the 19th Century, vol. 3 (1998)
18.
Zurück zum Zitat Levy, D., Tadmor, E.: From semidiscrete to fully discrete: stability of Runge–Kutta schemes by the energy method. SIAM Rev. 40(1), 40–73 (1998)MathSciNetCrossRef Levy, D., Tadmor, E.: From semidiscrete to fully discrete: stability of Runge–Kutta schemes by the energy method. SIAM Rev. 40(1), 40–73 (1998)MathSciNetCrossRef
19.
Zurück zum Zitat Mohan Rai, M., Moin, P.: Direct simulations of turbulent flow using finite-difference schemes. J. Comput. Phys. 96(1), 15–53 (1991)CrossRef Mohan Rai, M., Moin, P.: Direct simulations of turbulent flow using finite-difference schemes. J. Comput. Phys. 96(1), 15–53 (1991)CrossRef
20.
Zurück zum Zitat Peyret, R.: Spectral Methods for Incompressible Viscous Flow, vol. 148. Springer, Berlin (2002)CrossRef Peyret, R.: Spectral Methods for Incompressible Viscous Flow, vol. 148. Springer, Berlin (2002)CrossRef
21.
Zurück zum Zitat Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia (2004)MATH Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia (2004)MATH
23.
Zurück zum Zitat Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry-preserving discretization of turbulent flow. J. Comput. Phys. 187(1), 343–368 (2003)MathSciNetCrossRef Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry-preserving discretization of turbulent flow. J. Comput. Phys. 187(1), 343–368 (2003)MathSciNetCrossRef
24.
Zurück zum Zitat Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001)CrossRef Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001)CrossRef
25.
Zurück zum Zitat Yuan, X., Zhang, Q., Shu, C., Wang, H.: The L\(^2\)-norm stability analysis of Runge–Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57(4), 1574–1601 (2019)MathSciNetCrossRef Yuan, X., Zhang, Q., Shu, C., Wang, H.: The L\(^2\)-norm stability analysis of Runge–Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57(4), 1574–1601 (2019)MathSciNetCrossRef
Metadaten
Titel
Non-linear CFL Conditions Issued from the von Neumann Stability Analysis for the Transport Equation
verfasst von
Erwan Deriaz
Pierre Haldenwang
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01302-0

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner