Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.10.2020

A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations

verfasst von: Huan Liu, Aijie Cheng, Hong Wang

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate the well-posedness and solution regularity of a variable-order time-fractional diffusion equation, which is often used to model the solute transport in complex porous media where the micro-structure of the porous media may changes over time. We show that the variable-order time-fractional diffusion equations have flexible abilities to eliminate the nonphysical singularity of the solutions to their constant-order analogues. We also present a finite volume approximation and provide its stability and convergence analysis in a weighted discrete norm. Furthermore, we develop an efficient parallel-in-time procedure to improve the computational efficiency of the variable-order time-fractional diffusion equations. Numerical experiments are performed to confirm the theoretical results and to demonstrate the effectiveness and efficiency of the parallel-in-time method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2009)MathSciNetCrossRef Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2009)MathSciNetCrossRef
2.
Zurück zum Zitat Ervin, V., Heuer, N., Roop, J.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)MathSciNetCrossRef Ervin, V., Heuer, N., Roop, J.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)MathSciNetCrossRef
3.
Zurück zum Zitat Evans, L.C.: Graduate Studies in Mathematics. Partial Differential Equations, vol. 19. American Mathematical Society, Rhode Island (1998) Evans, L.C.: Graduate Studies in Mathematics. Partial Differential Equations, vol. 19. American Mathematical Society, Rhode Island (1998)
4.
Zurück zum Zitat Fu, H., Liu, H., Wang, H.: A finite volume method for two-dimensional Riemann-Liouville space-fractional diffusion equation and its efficient implementation. J. Comput. Phys. 388, 316–334 (2019)MathSciNetCrossRef Fu, H., Liu, H., Wang, H.: A finite volume method for two-dimensional Riemann-Liouville space-fractional diffusion equation and its efficient implementation. J. Comput. Phys. 388, 316–334 (2019)MathSciNetCrossRef
5.
Zurück zum Zitat Fu, H., Wang, H.: A preconditioned fast parareal finite difference method for space-time fractional partial differential equation. J. Sci. Comput. 78, 1724–1743 (2019)MathSciNetCrossRef Fu, H., Wang, H.: A preconditioned fast parareal finite difference method for space-time fractional partial differential equation. J. Sci. Comput. 78, 1724–1743 (2019)MathSciNetCrossRef
6.
Zurück zum Zitat Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)MATH Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)MATH
8.
Zurück zum Zitat Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)MathSciNetCrossRef Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)MathSciNetCrossRef
9.
Zurück zum Zitat Jiang, W., Liu, N.: A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model. Appl. Numer. Math. 119, 18–32 (2017)MathSciNetCrossRef Jiang, W., Liu, N.: A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model. Appl. Numer. Math. 119, 18–32 (2017)MathSciNetCrossRef
10.
Zurück zum Zitat Ke, R., Ng, M.K., Sun, H.W.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys 303(C), 203–211 (2015)MathSciNetCrossRef Ke, R., Ng, M.K., Sun, H.W.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys 303(C), 203–211 (2015)MathSciNetCrossRef
11.
Zurück zum Zitat Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)MathSciNetCrossRef Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)MathSciNetCrossRef
12.
Zurück zum Zitat Li, C., Ding, H.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)MathSciNetCrossRef Li, C., Ding, H.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)MathSciNetCrossRef
13.
Zurück zum Zitat Lin, Y., Xu, C.: Finite difference/spectral approximation for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRef Lin, Y., Xu, C.: Finite difference/spectral approximation for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRef
14.
Zurück zum Zitat Liu, Y., Du, Y., Li, H., Liu, F., Wang, Y.: Some second-order \(\theta \) schemes combined with finite element method for nonlinear fractional cable equation. Numer. Algorithms 80(2), 533–555 (2019)MathSciNetCrossRef Liu, Y., Du, Y., Li, H., Liu, F., Wang, Y.: Some second-order \(\theta \) schemes combined with finite element method for nonlinear fractional cable equation. Numer. Algorithms 80(2), 533–555 (2019)MathSciNetCrossRef
15.
Zurück zum Zitat Liu, Z., Li, X.: A Crank-Nicolson difference scheme for the time variable fractional mobile-immobile advection-dispersion equation. J. Appl. Math. Comput. 56(1–2), 391–410 (2018)MathSciNetCrossRef Liu, Z., Li, X.: A Crank-Nicolson difference scheme for the time variable fractional mobile-immobile advection-dispersion equation. J. Appl. Math. Comput. 56(1–2), 391–410 (2018)MathSciNetCrossRef
16.
Zurück zum Zitat Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64(10), 2990–3007 (2012)MathSciNetCrossRef Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64(10), 2990–3007 (2012)MathSciNetCrossRef
17.
Zurück zum Zitat Ma, H., Yang, Y.: Jacobi spectral collocation method for the time variable-order fractional mobile-immobile advection-dispersion solute transport model. East Asian J. Appl. Math. 6(3), 337–352 (2016)MathSciNetCrossRef Ma, H., Yang, Y.: Jacobi spectral collocation method for the time variable-order fractional mobile-immobile advection-dispersion solute transport model. East Asian J. Appl. Math. 6(3), 337–352 (2016)MathSciNetCrossRef
18.
Zurück zum Zitat Meerschaert M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics (2011) Meerschaert M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics (2011)
19.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRef Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRef
20.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)MATH
21.
Zurück zum Zitat Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRef Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRef
22.
Zurück zum Zitat Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39(10), 1296 (2003)CrossRef Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39(10), 1296 (2003)CrossRef
24.
Zurück zum Zitat Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation. SIAM Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRef Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation. SIAM Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRef
25.
Zurück zum Zitat Sun, H.G., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22(1), 27–59 (2019)MathSciNetCrossRef Sun, H.G., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22(1), 27–59 (2019)MathSciNetCrossRef
26.
Zurück zum Zitat Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)MathSciNetCrossRef Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)MathSciNetCrossRef
27.
Zurück zum Zitat Umarov, S.R., Steinberg, S.T.: Variable order differential equations with piecewise constant order function and diffusion with changing modes. Z. Anal. Anwend. 28, 431–450 (2009)MathSciNetCrossRef Umarov, S.R., Steinberg, S.T.: Variable order differential equations with piecewise constant order function and diffusion with changing modes. Z. Anal. Anwend. 28, 431–450 (2009)MathSciNetCrossRef
28.
Zurück zum Zitat Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)MathSciNetCrossRef Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)MathSciNetCrossRef
29.
Zurück zum Zitat Wang, H., Zheng, X.: Analysis and numerical solution of a nonlinear variable-order fractional differential equation. Adv. Comput. Math. 45, 2647–2675 (2019)MathSciNetCrossRef Wang, H., Zheng, X.: Analysis and numerical solution of a nonlinear variable-order fractional differential equation. Adv. Comput. Math. 45, 2647–2675 (2019)MathSciNetCrossRef
30.
Zurück zum Zitat Wu, S., Zhou, T.: Parareal algorithms with local time-integrators for time fractional differential equations. J. Comput. Phys. 358, 135–149 (2018)MathSciNetCrossRef Wu, S., Zhou, T.: Parareal algorithms with local time-integrators for time fractional differential equations. J. Comput. Phys. 358, 135–149 (2018)MathSciNetCrossRef
31.
Zurück zum Zitat Xian, Y., Jin, M., Zhan, H., Liu, Y.: Reactive transport of nutrients and bioclogging during dynamic disconnection process of stream and groundwater. Water Resour. Res. 55, 3882–3903 (2019)CrossRef Xian, Y., Jin, M., Zhan, H., Liu, Y.: Reactive transport of nutrients and bioclogging during dynamic disconnection process of stream and groundwater. Water Resour. Res. 55, 3882–3903 (2019)CrossRef
32.
Zurück zum Zitat Xu, Q., Hesthaven, J.S., Chen, F.: A parareal method for time-fractional differential equations. J. Comput. Phys. 293, 173–183 (2015)MathSciNetCrossRef Xu, Q., Hesthaven, J.S., Chen, F.: A parareal method for time-fractional differential equations. J. Comput. Phys. 293, 173–183 (2015)MathSciNetCrossRef
33.
Zurück zum Zitat Yin, B., Liu, Y., Li, H., He, S.: Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions. J. Comput. Phys. 379, 351–372 (2019)MathSciNetCrossRef Yin, B., Liu, Y., Li, H., He, S.: Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions. J. Comput. Phys. 379, 351–372 (2019)MathSciNetCrossRef
34.
Zurück zum Zitat Zeng, F., Zhang, Z., Karniadakis, G.E.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM Sci. Comput. 37, A2710–A2732 (2015)MathSciNetCrossRef Zeng, F., Zhang, Z., Karniadakis, G.E.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM Sci. Comput. 37, A2710–A2732 (2015)MathSciNetCrossRef
35.
Zurück zum Zitat Zhao, X., Sun, Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetCrossRef Zhao, X., Sun, Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetCrossRef
36.
Zurück zum Zitat Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66(5), 693–701 (2013)MathSciNetCrossRef Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66(5), 693–701 (2013)MathSciNetCrossRef
38.
Zurück zum Zitat Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Numer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRef Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Numer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRef
Metadaten
Titel
A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations
verfasst von
Huan Liu
Aijie Cheng
Hong Wang
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01321-x

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner