Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.10.2020

Strong Stability Preserving Second Derivative General Linear Methods with Runge–Kutta Stability

verfasst von: Afsaneh Moradi, Ali Abdi, Javad Farzi

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we describe the construction of second derivative general linear method with Runge–Kutta stability property preserving the strong stability properties of spatial discretizations. Then we present such methods that are obtained by the solution of the constrained minimization problem with nonlinear inequality constraints, corresponding to the strong stability preserving property of these methods, and equality constraints, corresponding to the order, stage order and Runge–Kutta stability conditions. The derived methods are of order \(p=q\) with \(r=2\) and \(s=p\) or \(s=p+1\), of order \(p=q=s=r-1\) and of order \(p=q+1=s=r\), where q, s and r are the stage order, the number of internal and the number of external stages, respectively. Efficiency of the proposed methods together with verification of the order of convergence and capability of these methods in solving partial differential equations with smooth and discontinues initial data are shown by some numerical experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abdi, A., Hojjati, G.: Maximal order for second derivative general linear methods with Runge–Kutta stability. Appl. Numer. Math. 61, 1046–1058 (2011)MathSciNetMATH Abdi, A., Hojjati, G.: Maximal order for second derivative general linear methods with Runge–Kutta stability. Appl. Numer. Math. 61, 1046–1058 (2011)MathSciNetMATH
2.
Zurück zum Zitat Abdi, A., Behzad, B.: Efficient Nordsieck second derivative general linear methods: construction and implementation. Calcolo 55(28), 1–16 (2018)MathSciNetMATH Abdi, A., Behzad, B.: Efficient Nordsieck second derivative general linear methods: construction and implementation. Calcolo 55(28), 1–16 (2018)MathSciNetMATH
3.
Zurück zum Zitat Abdi, A., Braś, M., Hojjati, G.: On the construction of second derivative diagonally implicit multistage integration methods. Appl. Numer. Math. 76, 1–18 (2014)MathSciNetMATH Abdi, A., Braś, M., Hojjati, G.: On the construction of second derivative diagonally implicit multistage integration methods. Appl. Numer. Math. 76, 1–18 (2014)MathSciNetMATH
4.
Zurück zum Zitat Abdi, A., Hojjati, G.: Implementation of Nordsieck second derivative methods for stiff ODEs. Appl. Numer. Math. 94, 241–253 (2015)MathSciNetMATH Abdi, A., Hojjati, G.: Implementation of Nordsieck second derivative methods for stiff ODEs. Appl. Numer. Math. 94, 241–253 (2015)MathSciNetMATH
5.
Zurück zum Zitat Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)MathSciNetMATH Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)MathSciNetMATH
6.
Zurück zum Zitat Butcher, J.C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algorithms 40, 415–429 (2005)MathSciNetMATH Butcher, J.C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algorithms 40, 415–429 (2005)MathSciNetMATH
7.
Zurück zum Zitat Califano, G., Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods with Runge–Kutta stability. J. Sci. Comput. 76, 943–968 (2018)MathSciNetMATH Califano, G., Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods with Runge–Kutta stability. J. Sci. Comput. 76, 943–968 (2018)MathSciNetMATH
8.
Zurück zum Zitat Christlieb, A.J., Gottlieb, S., Grant, Z.J., Seal, D.C.: Explicit strong stability preserving multistage two-derivative time-stepping schemes. J. Sci. Comput. 68, 914–942 (2016)MathSciNetMATH Christlieb, A.J., Gottlieb, S., Grant, Z.J., Seal, D.C.: Explicit strong stability preserving multistage two-derivative time-stepping schemes. J. Sci. Comput. 68, 914–942 (2016)MathSciNetMATH
9.
Zurück zum Zitat Constantinescu, E.M., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods. J. Sci. Comput. 32, 3130–3150 (2010)MathSciNetMATH Constantinescu, E.M., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods. J. Sci. Comput. 32, 3130–3150 (2010)MathSciNetMATH
10.
Zurück zum Zitat Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 2743 (1963)MathSciNet Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 2743 (1963)MathSciNet
11.
Zurück zum Zitat Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 74, 201–219 (2004)MathSciNetMATH Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 74, 201–219 (2004)MathSciNetMATH
12.
Zurück zum Zitat Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-boundedness in general Runge–Kutta procedures. Appl. Numer. Math. 53, 265–279 (2005)MathSciNetMATH Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-boundedness in general Runge–Kutta procedures. Appl. Numer. Math. 53, 265–279 (2005)MathSciNetMATH
13.
Zurück zum Zitat Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)MathSciNetMATH Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)MathSciNetMATH
14.
Zurück zum Zitat Grant, Z., Gottlieb, S., Seal, D.C.: A strong stability preserving analysis for multistage two-derivative time-stepping schemes based on Taylor series conditions. Commun. Appl. Math. Comput. 1, 21–59 (2019)MathSciNetMATH Grant, Z., Gottlieb, S., Seal, D.C.: A strong stability preserving analysis for multistage two-derivative time-stepping schemes based on Taylor series conditions. Commun. Appl. Math. Comput. 1, 21–59 (2019)MathSciNetMATH
15.
Zurück zum Zitat Gottlieb, S.: On high order strong stability preserving Runge–Kutta methods and multistep time discretizations. J. Sci. Comput. 25, 105–127 (2005)MathSciNetMATH Gottlieb, S.: On high order strong stability preserving Runge–Kutta methods and multistep time discretizations. J. Sci. Comput. 25, 105–127 (2005)MathSciNetMATH
16.
Zurück zum Zitat Gottlieb, S., Ketcheson, D.I., Shu, Chi-Wang: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009)MathSciNetMATH Gottlieb, S., Ketcheson, D.I., Shu, Chi-Wang: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009)MathSciNetMATH
17.
Zurück zum Zitat Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Hackensack (2011)MATH Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Hackensack (2011)MATH
18.
Zurück zum Zitat Gottlieb, S., Ruuth, S.J.: Optimal strong-stability-preserving time stepping schemes with fast downwind spatial discretizations. J. Sci. Comput. 27, 289–303 (2006)MathSciNetMATH Gottlieb, S., Ruuth, S.J.: Optimal strong-stability-preserving time stepping schemes with fast downwind spatial discretizations. J. Sci. Comput. 27, 289–303 (2006)MathSciNetMATH
19.
Zurück zum Zitat Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetMATH Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetMATH
20.
Zurück zum Zitat Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time Dependent Problems. Cambridge monographs of applied and computational mathematics. Cambridge University Press, Cambridge (2007)MATH Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time Dependent Problems. Cambridge monographs of applied and computational mathematics. Cambridge University Press, Cambridge (2007)MATH
21.
Zurück zum Zitat Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)MathSciNetMATH Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)MathSciNetMATH
22.
Zurück zum Zitat Higueras, I.: Monotonicity for Runge–Kutta methods: inner product norms. J. Sci. Comput. 24, 97–117 (2005)MathSciNetMATH Higueras, I.: Monotonicity for Runge–Kutta methods: inner product norms. J. Sci. Comput. 24, 97–117 (2005)MathSciNetMATH
23.
Zurück zum Zitat Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)MathSciNetMATH Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)MathSciNetMATH
24.
Zurück zum Zitat Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75, 655–672 (2005)MathSciNetMATH Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75, 655–672 (2005)MathSciNetMATH
25.
Zurück zum Zitat Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41, 605–623 (2003)MathSciNetMATH Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41, 605–623 (2003)MathSciNetMATH
26.
Zurück zum Zitat Izzo, G., Jackiewicz, Z.: Strong stability preserving transformed DIMSIMs. J. Comput. Appl. Math. 343, 174–188 (2018)MathSciNetMATH Izzo, G., Jackiewicz, Z.: Strong stability preserving transformed DIMSIMs. J. Comput. Appl. Math. 343, 174–188 (2018)MathSciNetMATH
27.
Zurück zum Zitat Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods. J. Sci. Comput. 65, 271–298 (2015)MathSciNetMATH Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods. J. Sci. Comput. 65, 271–298 (2015)MathSciNetMATH
28.
Zurück zum Zitat Izzo, G., Jackiewicz, Z.: Strong stability preserving multistage integration methods. Math. Model. Anal. 20, 552–577 (2015)MathSciNetMATH Izzo, G., Jackiewicz, Z.: Strong stability preserving multistage integration methods. Math. Model. Anal. 20, 552–577 (2015)MathSciNetMATH
29.
Zurück zum Zitat Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken (2009)MATH Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken (2009)MATH
30.
Zurück zum Zitat Jackiewicz, Z., Tracogna, S.: A general class of two-step Runge–Kutta methods for ordinary differential equations. SIAM J. Numer. Anal. 32, 1390–1427 (1995)MathSciNetMATH Jackiewicz, Z., Tracogna, S.: A general class of two-step Runge–Kutta methods for ordinary differential equations. SIAM J. Numer. Anal. 32, 1390–1427 (1995)MathSciNetMATH
31.
Zurück zum Zitat Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetMATH Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetMATH
32.
Zurück zum Zitat Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2011)MathSciNetMATH Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2011)MathSciNetMATH
33.
Zurück zum Zitat Moradi, A., Farzi, J., Abdi, A.: Strong stability preserving second derivative general linear methods. J. Sci. Comput. 81, 392–435 (2019) MathSciNetMATH Moradi, A., Farzi, J., Abdi, A.: Strong stability preserving second derivative general linear methods. J. Sci. Comput. 81, 392–435 (2019) MathSciNetMATH
34.
Zurück zum Zitat Moradi, A., Farzi, J., Abdi, A.: Order conditions for second derivative general linear methods. J. Comput. Appl. Math. (to appear) Moradi, A., Farzi, J., Abdi, A.: Order conditions for second derivative general linear methods. J. Comput. Appl. Math. (to appear)
35.
Zurück zum Zitat Moradi, A., Abdi, A., Farzi, J.: Strong stability preserving diagonally implicit multistage integration methods. Appl. Numer. Math. 150, 536–558 (2020)MathSciNetMATH Moradi, A., Abdi, A., Farzi, J.: Strong stability preserving diagonally implicit multistage integration methods. Appl. Numer. Math. 150, 536–558 (2020)MathSciNetMATH
36.
Zurück zum Zitat Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209, 226–248 (2005)MathSciNetMATH Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209, 226–248 (2005)MathSciNetMATH
37.
Zurück zum Zitat Seal, D.C., Guclu, Y., Christlieb, A.J.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60, 101–140 (2014)MathSciNetMATH Seal, D.C., Guclu, Y., Christlieb, A.J.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60, 101–140 (2014)MathSciNetMATH
38.
Zurück zum Zitat Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)MathSciNetMATH Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)MathSciNetMATH
39.
Zurück zum Zitat Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)MathSciNetMATH Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)MathSciNetMATH
40.
Zurück zum Zitat Shu, C.-W.: Total-variation diminishing time discretizations. J. Sci. Comput. 9, 1073–1084 (1988)MathSciNetMATH Shu, C.-W.: Total-variation diminishing time discretizations. J. Sci. Comput. 9, 1073–1084 (1988)MathSciNetMATH
41.
Zurück zum Zitat Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetMATH Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetMATH
42.
Zurück zum Zitat Tsai, A.Y.J., Chan, R.P.K., Wang, S.: Two-derivative Runge–Kutta methods for PDEs using a novel discretization approach. Numer. Algorithms 65, 687–703 (2014)MathSciNetMATH Tsai, A.Y.J., Chan, R.P.K., Wang, S.: Two-derivative Runge–Kutta methods for PDEs using a novel discretization approach. Numer. Algorithms 65, 687–703 (2014)MathSciNetMATH
Metadaten
Titel
Strong Stability Preserving Second Derivative General Linear Methods with Runge–Kutta Stability
verfasst von
Afsaneh Moradi
Ali Abdi
Javad Farzi
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01306-w

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner