Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.10.2020

Optimization Modeling and Simulating of the Stationary Wigner Inflow Boundary Value Problem

verfasst von: Zhangpeng Sun, Wenqi Yao, Tiao Lu

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The stationary Wigner inflow boundary value problem (SWIBVP) is modeled as an optimization problem by using the idea of shooting method in this paper. To remove the singularity at \(v=0\), we consider a regularized SWIBVP, where a regularization constraint is considered along with the original SWIBVP, and a modified optimization problem is established for it. A shooting algorithm is proposed to solve the two optimization problems, involving the limited-memory BFGS (L-BFGS) algorithm as the optimization solver. Numerical results show that solving the optimization problems with respect to the SWIBVP with the shooting algorithm is as effective as solving the SWIBVP with Frensley’s numerical method (Frensley in Phys Rev B 36:1570–1580, 1987). Furthermore, the modified optimization problem gets rid of the singularity at \(v=0\), and preserves symmetry of the Wigner function, which implies the optimization modeling with respect to the regularized SWIBVP is successful.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40(5), 749–759 (1932)MATHCrossRef Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40(5), 749–759 (1932)MATHCrossRef
2.
Zurück zum Zitat Weinbub, J., Ferry, D.K.: Recent advances in Wigner function approach. Appl. Phys. Rev. 5(4), 041104 (2018)CrossRef Weinbub, J., Ferry, D.K.: Recent advances in Wigner function approach. Appl. Phys. Rev. 5(4), 041104 (2018)CrossRef
3.
Zurück zum Zitat Bardos, C., Caflisch, R.E., Nicolaenko, B.: The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Commun. Pure Appl. Math. 39(3), 323–352 (1986)MathSciNetMATHCrossRef Bardos, C., Caflisch, R.E., Nicolaenko, B.: The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Commun. Pure Appl. Math. 39(3), 323–352 (1986)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Coron, F.: Computation of the asymptotic states for linear half space kinetic problems. Transp. Theory Stat. Phys. 19(2), 89–114 (1990)MathSciNetMATHCrossRef Coron, F.: Computation of the asymptotic states for linear half space kinetic problems. Transp. Theory Stat. Phys. 19(2), 89–114 (1990)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Bobylev, A.V., Palczewski, A., Schneider, J.: On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Sér I(320), 639–644 (1995)MathSciNetMATH Bobylev, A.V., Palczewski, A., Schneider, J.: On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Sér I(320), 639–644 (1995)MathSciNetMATH
6.
Zurück zum Zitat Palczewski, A., Schneider, J., Bobylev, A.V.: A consistency result for a discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal. 34(5), 1865–1883 (1997)MathSciNetMATHCrossRef Palczewski, A., Schneider, J., Bobylev, A.V.: A consistency result for a discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal. 34(5), 1865–1883 (1997)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Carrillo, J.A., Gamba, I.M., Majorana, A., Shu, C.-W.: A WENO-solver for the transient of devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)MathSciNetMATHCrossRef Carrillo, J.A., Gamba, I.M., Majorana, A., Shu, C.-W.: A WENO-solver for the transient of devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Bernhoff, N.: On half-space problems for the discrete Boltzmann equation. Il nuovo cimento C, Societa italiana di fisica 33(1), 47–54 (2010)MATH Bernhoff, N.: On half-space problems for the discrete Boltzmann equation. Il nuovo cimento C, Societa italiana di fisica 33(1), 47–54 (2010)MATH
9.
Zurück zum Zitat Hu, Z., Li, R., Lu, T., Wang, Y., Yao, W.: Simulation of an \(n^{+}\)-\(n\)-\(n^{+}\) Diode by using globally-hyperbolically-closed high-order moment models. J. Sci. Comput. 59, 761–774 (2014)MathSciNetMATHCrossRef Hu, Z., Li, R., Lu, T., Wang, Y., Yao, W.: Simulation of an \(n^{+}\)-\(n\)-\(n^{+}\) Diode by using globally-hyperbolically-closed high-order moment models. J. Sci. Comput. 59, 761–774 (2014)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Li, R., Lu, T., Yao, W.: Discrete kernel preserving model for 1D optical electron–phonon scattering. J. Sci. Comput. 62(2), 317–335 (2015)MathSciNetMATHCrossRef Li, R., Lu, T., Yao, W.: Discrete kernel preserving model for 1D optical electron–phonon scattering. J. Sci. Comput. 62(2), 317–335 (2015)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Li, Q., Lu, J., Sun, W.: A convergent method for linear half-space kinetic equations. ESAIM Math. Model. Numer. Anal. 51(5), 1583–1615 (2017)MathSciNetMATHCrossRef Li, Q., Lu, J., Sun, W.: A convergent method for linear half-space kinetic equations. ESAIM Math. Model. Numer. Anal. 51(5), 1583–1615 (2017)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Yao, W., Lu, T.: Discrete kernel preserving model for 3D electron-optical phonon scattering under arbitrary band structures. J. Sci. Comput. 81(3), 2213–2236 (2019)MathSciNetMATHCrossRef Yao, W., Lu, T.: Discrete kernel preserving model for 3D electron-optical phonon scattering under arbitrary band structures. J. Sci. Comput. 81(3), 2213–2236 (2019)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Frensley, W.R.: Wigner function model of a resonant-tunneling semiconductor device. Phys. Rev. B 36, 1570–1580 (1987)CrossRef Frensley, W.R.: Wigner function model of a resonant-tunneling semiconductor device. Phys. Rev. B 36, 1570–1580 (1987)CrossRef
14.
Zurück zum Zitat Arnold, A., Lange, H., Zweifel, P.F.: A discrete-velocity, stationary Wigner equation. J. Math. Phys. 41(11), 7167–7180 (2000)MathSciNetMATHCrossRef Arnold, A., Lange, H., Zweifel, P.F.: A discrete-velocity, stationary Wigner equation. J. Math. Phys. 41(11), 7167–7180 (2000)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Barletti, L., Zweifel, P.F.: Parity-decomposition method for the stationary Wigner equation with inflow boundary conditions. Transp. Theory Stat. Phys. 30(4–6), 507–520 (2001)MathSciNetMATHCrossRef Barletti, L., Zweifel, P.F.: Parity-decomposition method for the stationary Wigner equation with inflow boundary conditions. Transp. Theory Stat. Phys. 30(4–6), 507–520 (2001)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Li, R., Lu, T., Sun, Z.P.: Stationary Wigner equation with inflow boundary conditions: will a symmetric potential yield a symmetric solution? SIAM J. Appl. Math. 70(3), 885–897 (2014)MathSciNetMATHCrossRef Li, R., Lu, T., Sun, Z.P.: Stationary Wigner equation with inflow boundary conditions: will a symmetric potential yield a symmetric solution? SIAM J. Appl. Math. 70(3), 885–897 (2014)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Li, R., Lu, T., Sun, Z.P.: Parity-decomposition and moment analysis for stationary Wigner equation with inflow boundary condition. Front. Math. China 12(4), 907–919 (2017)MathSciNetMATHCrossRef Li, R., Lu, T., Sun, Z.P.: Parity-decomposition and moment analysis for stationary Wigner equation with inflow boundary condition. Front. Math. China 12(4), 907–919 (2017)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Jensen, K.L., Buot, F.A.: Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures. Phys. Rev. Lett. 66, 1078–1081 (1991)CrossRef Jensen, K.L., Buot, F.A.: Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures. Phys. Rev. Lett. 66, 1078–1081 (1991)CrossRef
19.
Zurück zum Zitat Taj, D., Genovese, L., Rossi, F.: Quantum-transport simulations with the Wigner-function formalism: failure of conventional boundary-condition schemes. Europhys. Lett. 74(6), 1060–1066 (2006)CrossRef Taj, D., Genovese, L., Rossi, F.: Quantum-transport simulations with the Wigner-function formalism: failure of conventional boundary-condition schemes. Europhys. Lett. 74(6), 1060–1066 (2006)CrossRef
20.
Zurück zum Zitat Jiang, H., Lu, T., Cai, W.: A device adaptive inflow boundary condition for Wigner equations of quantum transport. J. Comput. Phys. 258, 773–786 (2014)MathSciNetMATHCrossRef Jiang, H., Lu, T., Cai, W.: A device adaptive inflow boundary condition for Wigner equations of quantum transport. J. Comput. Phys. 258, 773–786 (2014)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Dorda, A., Schürrer, F.: A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes. J. Comput. Phys. 284, 95–116 (2015)MathSciNetMATHCrossRef Dorda, A., Schürrer, F.: A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes. J. Comput. Phys. 284, 95–116 (2015)MathSciNetMATHCrossRef
22.
Zurück zum Zitat Shao, S., Lu, T., Cai, W.: Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport. Commun. Comput. Phys. 9(3), 711–739 (2011)MathSciNetMATHCrossRef Shao, S., Lu, T., Cai, W.: Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport. Commun. Comput. Phys. 9(3), 711–739 (2011)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Furtmaier, O., Succi, S., Mendoza, M.: Semi-spectral method for the Wigner equation. J. Comput. Phys. 305, 1015–1036 (2016)MathSciNetMATHCrossRef Furtmaier, O., Succi, S., Mendoza, M.: Semi-spectral method for the Wigner equation. J. Comput. Phys. 305, 1015–1036 (2016)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Xiong, Y., Chen, Z., Shao, S.: An advective-spectral-mixed method for time-dependent many-body Wigner simulations. SIAM J. Sci. Comput. 38(4), B491–B520 (2016)MathSciNetMATHCrossRef Xiong, Y., Chen, Z., Shao, S.: An advective-spectral-mixed method for time-dependent many-body Wigner simulations. SIAM J. Sci. Comput. 38(4), B491–B520 (2016)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Chen, Z., Xiong, Y., Shao, S.: Numerical methods for the Wigner equation with unbounded potential. J. Sci. Comput. 79(1), 345–368 (2019)MathSciNetMATHCrossRef Chen, Z., Xiong, Y., Shao, S.: Numerical methods for the Wigner equation with unbounded potential. J. Sci. Comput. 79(1), 345–368 (2019)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Cai, Z., Fan, Y., Li, R., Lu, T., Wang, Y.: Quantum hydrodynamic model by moment closure of Wigner equation. J. Math. Phys. 53(10), 103503 (2012)MathSciNetMATHCrossRef Cai, Z., Fan, Y., Li, R., Lu, T., Wang, Y.: Quantum hydrodynamic model by moment closure of Wigner equation. J. Math. Phys. 53(10), 103503 (2012)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Cai, Z., Fan, Y., Li, R., Lu, T., Yao, W.: Quantum hydrodynamic model of density functional theory. J. Math. Chem. 51(7), 1747–1771 (2013)MathSciNetMATHCrossRef Cai, Z., Fan, Y., Li, R., Lu, T., Yao, W.: Quantum hydrodynamic model of density functional theory. J. Math. Chem. 51(7), 1747–1771 (2013)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Rossi, F., Jacoboni, C., Nedjalkov, M.: A Monte Carlo solution of the Wigner transport equation. Semicond. Sci. Technol. 9(5S), 934–936 (1994)CrossRef Rossi, F., Jacoboni, C., Nedjalkov, M.: A Monte Carlo solution of the Wigner transport equation. Semicond. Sci. Technol. 9(5S), 934–936 (1994)CrossRef
29.
Zurück zum Zitat Shifren, L., Ringhofer, C., Ferry, D.K.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron Dev. 50(3), 769–773 (2003)CrossRef Shifren, L., Ringhofer, C., Ferry, D.K.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron Dev. 50(3), 769–773 (2003)CrossRef
30.
Zurück zum Zitat Stoer, J., Burlisch, R.: Introduction to Numerical Analysis. Springer, New York (1980)CrossRef Stoer, J., Burlisch, R.: Introduction to Numerical Analysis. Springer, New York (1980)CrossRef
31.
Zurück zum Zitat Lu, T., Sun, Z.P.: Singularity-free numerical scheme for the stationary Wigner equation. J. Comput. Math. 37(2), 170–183 (2019)MathSciNetMATHCrossRef Lu, T., Sun, Z.P.: Singularity-free numerical scheme for the stationary Wigner equation. J. Comput. Math. 37(2), 170–183 (2019)MathSciNetMATHCrossRef
Metadaten
Titel
Optimization Modeling and Simulating of the Stationary Wigner Inflow Boundary Value Problem
verfasst von
Zhangpeng Sun
Wenqi Yao
Tiao Lu
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01338-2

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner