Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2018

03.01.2017 | Original Research

A Crank–Nicolson difference scheme for the time variable fractional mobile–immobile advection–dispersion equation

verfasst von: Zhengguang Liu, Xiaoli Li

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A Crank–Nicolson finite difference scheme to solve a time variable order fractional mobile–immobile advection–dispersion equation is introduced and analyzed. Some a priori estimates of discrete \(L^2\)-norm with order of convergence \(O(\tau +h^2)\) are established on uniform grids where \(\tau \) and h are the steps sizes in time and space. Stability and convergence of the numerical solutions are presented in detail. Numerical examples are provided to verify the theoretical analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, N., Deng, W., Wu, Y.: Finite difference/element method for a two-dimensional modified fractional diffusion equation. Adv. Appl. Math. Mech. 4(04), 496–518 (2012)MathSciNetCrossRefMATH Zhang, N., Deng, W., Wu, Y.: Finite difference/element method for a two-dimensional modified fractional diffusion equation. Adv. Appl. Math. Mech. 4(04), 496–518 (2012)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235(11), 3285–3290 (2011)MathSciNetCrossRefMATH Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235(11), 3285–3290 (2011)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Li, W., Da, X.: Finite central difference/finite element approximations for parabolic integro-differential equations. Computing 90(3–4), 89–111 (2010)MathSciNetCrossRefMATH Li, W., Da, X.: Finite central difference/finite element approximations for parabolic integro-differential equations. Computing 90(3–4), 89–111 (2010)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)MathSciNetCrossRefMATH Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Liu, Y., Li, H., Gao, W., He, S., Fang, Z.: A new mixed element method for a class of time-fractional partial differential equations. Sci. World J. 141467 (2014) Liu, Y., Li, H., Gao, W., He, S., Fang, Z.: A new mixed element method for a class of time-fractional partial differential equations. Sci. World J. 141467 (2014)
6.
7.
Zurück zum Zitat Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)MathSciNetCrossRefMATH Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Liu, Y., Du, Y., Li, H., et al.: An \(H^1\)-Galerkin mixed finite element method for time fractional reaction–diffusion equation. J. Appl. Math. Comput. 47(1–2), 103–117 (2015)MathSciNetCrossRefMATH Liu, Y., Du, Y., Li, H., et al.: An \(H^1\)-Galerkin mixed finite element method for time fractional reaction–diffusion equation. J. Appl. Math. Comput. 47(1–2), 103–117 (2015)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Sousa, E.: A second order explicit finite difference method for the fractional advection diffusion equation. Comput. Math. Appl. 64(10), 3141–3152 (2012)MathSciNetCrossRefMATH Sousa, E.: A second order explicit finite difference method for the fractional advection diffusion equation. Comput. Math. Appl. 64(10), 3141–3152 (2012)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Sousa, E.: An explicit high order method for fractional advection diffusion equations. J. Comput. Phys. 278, 257–274 (2014)MathSciNetCrossRefMATH Sousa, E.: An explicit high order method for fractional advection diffusion equations. J. Comput. Phys. 278, 257–274 (2014)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Sousa, E.: Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228(11), 4038–4054 (2009)MathSciNetCrossRefMATH Sousa, E.: Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228(11), 4038–4054 (2009)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Huang, J., Tang, Y., Vzquez, L., et al.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64(4), 707–720 (2013)MathSciNetCrossRefMATH Huang, J., Tang, Y., Vzquez, L., et al.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64(4), 707–720 (2013)MathSciNetCrossRefMATH
13.
14.
Zurück zum Zitat Li, X., Rui, H.: A two-grid block-centered finite difference method for nonlinear non-fickian flow model. Appl. Math. Comput. 281, 300–313 (2016)MathSciNetCrossRef Li, X., Rui, H.: A two-grid block-centered finite difference method for nonlinear non-fickian flow model. Appl. Math. Comput. 281, 300–313 (2016)MathSciNetCrossRef
15.
Zurück zum Zitat Liu, Z., Li, X.: A parallel CGS block-centered finite difference method for a nonlinear time-fractional parabolic equation. Comput. Methods Appl. Mech. Eng. 308, 330–348 (2016)MathSciNetCrossRef Liu, Z., Li, X.: A parallel CGS block-centered finite difference method for a nonlinear time-fractional parabolic equation. Comput. Methods Appl. Mech. Eng. 308, 330–348 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Cheng, A., Wang, H., Wang, K.: A Eulerian–Lagrangian control volume method for solute transport with anomalous diffusion. Numer. Methods Partial Differ. Eqs. 31(1), 253–267 (2015)MathSciNetCrossRefMATH Cheng, A., Wang, H., Wang, K.: A Eulerian–Lagrangian control volume method for solute transport with anomalous diffusion. Numer. Methods Partial Differ. Eqs. 31(1), 253–267 (2015)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Liu, F., Zhuang, P., Turner, I., et al.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38(15), 3871–3878 (2014)MathSciNetCrossRef Liu, F., Zhuang, P., Turner, I., et al.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38(15), 3871–3878 (2014)MathSciNetCrossRef
18.
Zurück zum Zitat Wei, L., He, Y.: Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl. Math. Model. 38(4), 1511–1522 (2014)MathSciNetCrossRef Wei, L., He, Y.: Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl. Math. Model. 38(4), 1511–1522 (2014)MathSciNetCrossRef
19.
Zurück zum Zitat Liu, X., et al.: On some new integral inequalities of Gronwall–Bellman–Bihari type with delay for discontinuous functions and their applications. Indag. Math. 27, 1–10 (2016)MathSciNetCrossRefMATH Liu, X., et al.: On some new integral inequalities of Gronwall–Bellman–Bihari type with delay for discontinuous functions and their applications. Indag. Math. 27, 1–10 (2016)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)MathSciNetCrossRefMATH Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80(275), 1369–1396 (2011)MathSciNetCrossRefMATH Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80(275), 1369–1396 (2011)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Zhao, X., Sun, Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetCrossRefMATH Zhao, X., Sun, Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model. Comput. Math. Appl. 66(5), 693–701 (2013)MathSciNetCrossRefMATH Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model. Comput. Math. Appl. 66(5), 693–701 (2013)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Atangana, A.: On the stability and convergence of the time-fractional variable order telegraph equation. J. Comput. Phys. 293, 104–114 (2015)MathSciNetCrossRefMATH Atangana, A.: On the stability and convergence of the time-fractional variable order telegraph equation. J. Comput. Phys. 293, 104–114 (2015)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Atangana, A., Baleanu, D.: Numerical solution of a kind of fractional parabolic equations via two difference schemes. Abstr. Appl. Anal. 141467 (2013) Atangana, A., Baleanu, D.: Numerical solution of a kind of fractional parabolic equations via two difference schemes. Abstr. Appl. Anal. 141467 (2013)
26.
Zurück zum Zitat Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32(4), 561–581 (2009)CrossRef Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32(4), 561–581 (2009)CrossRef
27.
Zurück zum Zitat Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39(10) (2003). doi:10.1029/2003WR002141 Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39(10) (2003). doi:10.​1029/​2003WR002141
28.
Zurück zum Zitat Liu, Qingxia, et al.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)MathSciNetCrossRefMATH Liu, Qingxia, et al.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64(10), 2990–3007 (2012)MathSciNetCrossRefMATH Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64(10), 2990–3007 (2012)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Ashyralyev, A., Cakir, Z.: On the numerical solution of fractional parabolic partial differential equations with the Dirichlet condition. Discret. Dyn. Nat. Soc. (2012). doi:10.1155/2012/696179 Ashyralyev, A., Cakir, Z.: On the numerical solution of fractional parabolic partial differential equations with the Dirichlet condition. Discret. Dyn. Nat. Soc. (2012). doi:10.​1155/​2012/​696179
31.
Zurück zum Zitat Ashyralyev, A., Cakir, Z.: Fdm for fractional parabolic equations with the Neumann condition. Adv. Differ. Eqs. 2013(1), 1–16 (2013)CrossRefMATH Ashyralyev, A., Cakir, Z.: Fdm for fractional parabolic equations with the Neumann condition. Adv. Differ. Eqs. 2013(1), 1–16 (2013)CrossRefMATH
32.
Zurück zum Zitat Karatay, I., Kale, N., Bayramoglu, S.R.: A new difference scheme for time fractional heat equations based on the Crank–Nicholson method. Fract. Calc. Appl. Anal. 16(4), 892–910 (2014)MATH Karatay, I., Kale, N., Bayramoglu, S.R.: A new difference scheme for time fractional heat equations based on the Crank–Nicholson method. Fract. Calc. Appl. Anal. 16(4), 892–910 (2014)MATH
Metadaten
Titel
A Crank–Nicolson difference scheme for the time variable fractional mobile–immobile advection–dispersion equation
verfasst von
Zhengguang Liu
Xiaoli Li
Publikationsdatum
03.01.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2018
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-016-1079-7

Weitere Artikel der Ausgabe 1-2/2018

Journal of Applied Mathematics and Computing 1-2/2018 Zur Ausgabe