Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.10.2020

Semi-implicit Hermite–Galerkin Spectral Method for Distributed-Order Fractional-in-Space Nonlinear Reaction–Diffusion Equations in Multidimensional Unbounded Domains

verfasst von: Shimin Guo, Liquan Mei, Can Li, Zhengqiang Zhang, Ying Li

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we construct an efficient Hermite–Galerkin spectral method for the nonlinear reaction–diffusion equations with distributed-order fractional Laplacian in multidimensional unbounded domains. By applying Gauss–Legendre quadrature rule for the distributed integral term, we first approximate the original distributed-order fractional problem by the multi-term fractional-in-space differential equation. Applying Hermite–Galerkin spectral method in space and backward difference method in time, we establish semi-implicit fully discrete scheme. For two- and three-dimensional cases of the original fractional problem, the linear systems are solved by the preconditioned conjugate gradients method. The main advantage of our method is that the original fractional problem is directly solved in the unbounded domains, thus avoiding the errors introduced by the domain truncations. The stability analysis is rigourously established, which shows that our scheme is unconditionally stable under suitable assumption on the nonlinear term. Several numerical examples are presented to validate both stability and accuracy of the numerical method. The numerical results of the fractional Allen–Cahn, Gray–Scott, and Belousov–Zhabotinskii models show that our semi-implicit methods produce good numerical solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006) Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)
2.
Zurück zum Zitat Magin, R.: Fractional Calculus in Bioengineering. Begell House Publishers Inc., Connecticut (2006) Magin, R.: Fractional Calculus in Bioengineering. Begell House Publishers Inc., Connecticut (2006)
3.
Zurück zum Zitat Zaslavsky, G.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)MathSciNetMATH Zaslavsky, G.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)MathSciNetMATH
4.
Zurück zum Zitat Pipkin, A.: Lectures on Viscoelasticity Theory, 2nd edn. Springer-Verlag, New York (1986)MATH Pipkin, A.: Lectures on Viscoelasticity Theory, 2nd edn. Springer-Verlag, New York (1986)MATH
5.
Zurück zum Zitat Zhao, T., Mao, Z., Karniadakis, G.: Multi-domain spectral collocation method for variable-order nonlinear fractional differential equations. Comput. Methods Appl. Mech. Eng. 348, 377–395 (2019)MathSciNetMATH Zhao, T., Mao, Z., Karniadakis, G.: Multi-domain spectral collocation method for variable-order nonlinear fractional differential equations. Comput. Methods Appl. Mech. Eng. 348, 377–395 (2019)MathSciNetMATH
6.
Zurück zum Zitat Caputo, M.: Elasticit‘ae dissipazione. Zanichelli Publisher, Bologna (1969) Caputo, M.: Elasticit‘ae dissipazione. Zanichelli Publisher, Bologna (1969)
7.
Zurück zum Zitat Sokolov, I., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Phys. Polon. B 35, 1323–1341 (2004) Sokolov, I., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Phys. Polon. B 35, 1323–1341 (2004)
8.
Zurück zum Zitat Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, 96–104 (2009)MathSciNetMATH Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, 96–104 (2009)MathSciNetMATH
9.
Zurück zum Zitat Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002) Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)
10.
Zurück zum Zitat Jiao, Z., Chen, Y., Podlubny, I.: Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives. Springer, London (2012)MATH Jiao, Z., Chen, Y., Podlubny, I.: Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives. Springer, London (2012)MATH
11.
Zurück zum Zitat Song, F., Xu, C., Karniadakis, G.: A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations. Comput. Methods Appl. Mech. Eng. 305, 376–404 (2016)MathSciNetMATH Song, F., Xu, C., Karniadakis, G.: A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations. Comput. Methods Appl. Mech. Eng. 305, 376–404 (2016)MathSciNetMATH
12.
Zurück zum Zitat Song, F., Xu, C.: Spectral direction splitting methods for two-dimensional space fractional diffusion equations. J. Comput. Phys. 299, 196–214 (2015)MathSciNetMATH Song, F., Xu, C.: Spectral direction splitting methods for two-dimensional space fractional diffusion equations. J. Comput. Phys. 299, 196–214 (2015)MathSciNetMATH
13.
Zurück zum Zitat Liu, L., Feng, L., Xu, Q., Chen, Y.: Anomalous diffusion in comb model subject to a novel distributed order time fractional Cattaneo–Christov flux. Appl. Math. Lett. 102, 106116 (2020)MathSciNetMATH Liu, L., Feng, L., Xu, Q., Chen, Y.: Anomalous diffusion in comb model subject to a novel distributed order time fractional Cattaneo–Christov flux. Appl. Math. Lett. 102, 106116 (2020)MathSciNetMATH
14.
Zurück zum Zitat Bu, W., Ji, L., Tang, Y., Zhou, J.: Space-time finite element method for the distributed-order time fractional reaction diffusion equations. Appl. Numer. Math. 152, 446–465 (2020)MathSciNetMATH Bu, W., Ji, L., Tang, Y., Zhou, J.: Space-time finite element method for the distributed-order time fractional reaction diffusion equations. Appl. Numer. Math. 152, 446–465 (2020)MathSciNetMATH
15.
Zurück zum Zitat Shi, Y., Liu, F., Zhao, Y., Wang, F., Turner, I.: An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain. Appl. Math. Model. 73, 615–636 (2019)MathSciNetMATH Shi, Y., Liu, F., Zhao, Y., Wang, F., Turner, I.: An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain. Appl. Math. Model. 73, 615–636 (2019)MathSciNetMATH
16.
Zurück zum Zitat Fan, W., Liu, F.: A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Appl. Math. Lett. 77, 114–121 (2018)MathSciNetMATH Fan, W., Liu, F.: A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Appl. Math. Lett. 77, 114–121 (2018)MathSciNetMATH
17.
Zurück zum Zitat Jia, J., Wang, H.: A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput. Math. Appl. 75, 2031–2043 (2018)MathSciNetMATH Jia, J., Wang, H.: A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput. Math. Appl. 75, 2031–2043 (2018)MathSciNetMATH
18.
Zurück zum Zitat Guo, S., Mei, L., Zhang, Z., Li, C., Li, M., Wang, Y.: A linearized finite difference/spectral-Galerkin scheme for three-dimensional distributed-order time-space fractional nonlinear reaction–diffusion-wave equation: numerical simulations of Gordon-type solitons. Comput. Phys. Commun. 252, 107144 (2020)MathSciNet Guo, S., Mei, L., Zhang, Z., Li, C., Li, M., Wang, Y.: A linearized finite difference/spectral-Galerkin scheme for three-dimensional distributed-order time-space fractional nonlinear reaction–diffusion-wave equation: numerical simulations of Gordon-type solitons. Comput. Phys. Commun. 252, 107144 (2020)MathSciNet
19.
Zurück zum Zitat Kazmi, K., Khaliq, A.: An efficient split-step method for distributed-order space-fractional reaction-diffusion equations with time-dependent boundary conditions. Appl. Numer. Math. 147, 142–160 (2020)MathSciNetMATH Kazmi, K., Khaliq, A.: An efficient split-step method for distributed-order space-fractional reaction-diffusion equations with time-dependent boundary conditions. Appl. Numer. Math. 147, 142–160 (2020)MathSciNetMATH
20.
Zurück zum Zitat Guo, S., Mei, L., Zhang, Z., Jiang, Y.: Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time-space fractional reaction–diffusion equation. Appl. Math. Lett. 85, 157–163 (2018)MathSciNetMATH Guo, S., Mei, L., Zhang, Z., Jiang, Y.: Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time-space fractional reaction–diffusion equation. Appl. Math. Lett. 85, 157–163 (2018)MathSciNetMATH
21.
Zurück zum Zitat Mao, Z., Shen, J.: Hermite spectral methods for fractional PDEs in unbounded domains. SIAM J. Sci. Comput. 39, A1928–A1950 (2017)MathSciNetMATH Mao, Z., Shen, J.: Hermite spectral methods for fractional PDEs in unbounded domains. SIAM J. Sci. Comput. 39, A1928–A1950 (2017)MathSciNetMATH
22.
Zurück zum Zitat Tang, T., Yuan, H., Zhou, T.: Hermite spectral collocation methods for fractional PDEs in unbounded domains. Commun. Comput. Phys. 24, 1143–1168 (2018)MathSciNet Tang, T., Yuan, H., Zhou, T.: Hermite spectral collocation methods for fractional PDEs in unbounded domains. Commun. Comput. Phys. 24, 1143–1168 (2018)MathSciNet
23.
Zurück zum Zitat Khosravian-Arab, H., Dehghan, M., Eslahchi, M.R.: Fractional spectral and pseudo-spectral methods in unbounded domains: theory and applications. J. Comput. Phys. 338, 527–566 (2017)MathSciNetMATH Khosravian-Arab, H., Dehghan, M., Eslahchi, M.R.: Fractional spectral and pseudo-spectral methods in unbounded domains: theory and applications. J. Comput. Phys. 338, 527–566 (2017)MathSciNetMATH
24.
Zurück zum Zitat Khosravian-Arab, H., Dehghan, M., Eslahchi, M.R.: Fractional Sturm–Liouville boundary value problems in unbounded domains: theory and applications. J. Comput. Phys. 299, 526–560 (2015)MathSciNetMATH Khosravian-Arab, H., Dehghan, M., Eslahchi, M.R.: Fractional Sturm–Liouville boundary value problems in unbounded domains: theory and applications. J. Comput. Phys. 299, 526–560 (2015)MathSciNetMATH
25.
Zurück zum Zitat Gao, G., Sun, Z., Zhang, Y.: A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231, 2865–2879 (2012)MathSciNetMATH Gao, G., Sun, Z., Zhang, Y.: A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231, 2865–2879 (2012)MathSciNetMATH
26.
Zurück zum Zitat Gao, G., Sun, Z.: The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain. J. Comput. Phys. 236, 443–460 (2013)MathSciNetMATH Gao, G., Sun, Z.: The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain. J. Comput. Phys. 236, 443–460 (2013)MathSciNetMATH
27.
Zurück zum Zitat Brunner, H., Han, H., Yin, D.: Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain. J. Comput. Phys. 276, 541–562 (2014)MathSciNetMATH Brunner, H., Han, H., Yin, D.: Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain. J. Comput. Phys. 276, 541–562 (2014)MathSciNetMATH
28.
Zurück zum Zitat Ma, H., Zhao, T.: A stabilized Hermite spectral method for second-order differential equations in unbounded domains. Numer. Methods Part. Differ. Equ. 23, 968–983 (2007)MathSciNetMATH Ma, H., Zhao, T.: A stabilized Hermite spectral method for second-order differential equations in unbounded domains. Numer. Methods Part. Differ. Equ. 23, 968–983 (2007)MathSciNetMATH
29.
Zurück zum Zitat Tang, T.: The Hermite spectral method for Gauss-type function. SIAM J. Sci. Comput. 14, 594–606 (1993)MathSciNetMATH Tang, T.: The Hermite spectral method for Gauss-type function. SIAM J. Sci. Comput. 14, 594–606 (1993)MathSciNetMATH
30.
Zurück zum Zitat Guo, B., Wang, L., Wang, Z.: Generalized Laguerre interpolation and pseudospectral method for unbounded domains. SIAM J. Numer. Anal. 43, 2567–2589 (2006)MathSciNetMATH Guo, B., Wang, L., Wang, Z.: Generalized Laguerre interpolation and pseudospectral method for unbounded domains. SIAM J. Numer. Anal. 43, 2567–2589 (2006)MathSciNetMATH
31.
Zurück zum Zitat Guo, S., Mei, L., Zhang, Z., Chen, J., He, Y., Li, Y.: Finite difference/Hermite-Galerkin spectral method for multi-dimensional time-fractional nonlinear reaction–diffusion equation in unbounded domains. Appl. Math. Model. 70, 246–263 (2019)MathSciNetMATH Guo, S., Mei, L., Zhang, Z., Chen, J., He, Y., Li, Y.: Finite difference/Hermite-Galerkin spectral method for multi-dimensional time-fractional nonlinear reaction–diffusion equation in unbounded domains. Appl. Math. Model. 70, 246–263 (2019)MathSciNetMATH
32.
Zurück zum Zitat Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M., Ainsworth, M., EmKarniadakis, G.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020)MathSciNet Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M., Ainsworth, M., EmKarniadakis, G.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020)MathSciNet
33.
Zurück zum Zitat Song, F., Xu, C., Karniadakis, G.: Computing fractional Laplacians on complex-geometry domains: algorithms and simulations. SIAM J. Sci. Comput. 39, A1320–A1344 (2017)MathSciNetMATH Song, F., Xu, C., Karniadakis, G.: Computing fractional Laplacians on complex-geometry domains: algorithms and simulations. SIAM J. Sci. Comput. 39, A1320–A1344 (2017)MathSciNetMATH
34.
Zurück zum Zitat Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton (1971)MATH Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton (1971)MATH
35.
Zurück zum Zitat Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. In: Springer Series in Computational Mathematics, vol. 41, Springer, Heidelberg ( 2011) Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. In: Springer Series in Computational Mathematics, vol. 41, Springer, Heidelberg ( 2011)
36.
Zurück zum Zitat Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004)MATH Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004)MATH
37.
Zurück zum Zitat Maroni, P., da Rocha, Z.: Connection coeffcients between orthogonal polynomials and the canonical sequence: an approach based on symbolic computation. Numer. Algorithms 47, 291–314 (2008)MathSciNetMATH Maroni, P., da Rocha, Z.: Connection coeffcients between orthogonal polynomials and the canonical sequence: an approach based on symbolic computation. Numer. Algorithms 47, 291–314 (2008)MathSciNetMATH
38.
Zurück zum Zitat Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (2008)MATH Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (2008)MATH
39.
Zurück zum Zitat Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)MATH Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)MATH
40.
Zurück zum Zitat Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979) Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)
41.
Zurück zum Zitat Lam, L., Prost, J.: Solitons in Liquid Crystals. Springer, New York (1992) Lam, L., Prost, J.: Solitons in Liquid Crystals. Springer, New York (1992)
42.
Zurück zum Zitat Gray, P., Scott, S.K.: Sustained oscillations and other exotic patterns of behavior in isothermal reactions. J. Phys. Chem. 89, 22–32 (1985) Gray, P., Scott, S.K.: Sustained oscillations and other exotic patterns of behavior in isothermal reactions. J. Phys. Chem. 89, 22–32 (1985)
43.
Zurück zum Zitat Belousov, B.: A periodic reaction and its mechanism. Ref. Radiat. Med. Medgiz 1, 145–160 (1959) Belousov, B.: A periodic reaction and its mechanism. Ref. Radiat. Med. Medgiz 1, 145–160 (1959)
Metadaten
Titel
Semi-implicit Hermite–Galerkin Spectral Method for Distributed-Order Fractional-in-Space Nonlinear Reaction–Diffusion Equations in Multidimensional Unbounded Domains
verfasst von
Shimin Guo
Liquan Mei
Can Li
Zhengqiang Zhang
Ying Li
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01320-y

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner